-
Notifications
You must be signed in to change notification settings - Fork 4
/
npy2tfmodel.py
47 lines (41 loc) · 1.54 KB
/
npy2tfmodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Copyright 2017 Chenxi Liu. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# sample usage:
# python npy2tfmodel.py 0 ./model/ResNet101.npy ./model/ResNet101_init.tfmodel
import numpy as np
import tensorflow as tf
import resnet_model
import sys
import os; os.environ['CUDA_VISIBLE_DEVICES'] = sys.argv[1]
import pdb
weights = np.load(sys.argv[2])[()]
# fully connected -> fully convolutional
weights['fc1000/DW'] = np.expand_dims(
np.expand_dims(weights['fc1000/DW'], axis=0), axis=0)
model = resnet_model.ResNet(atrous=False)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
var_list = tf.all_variables()
count = 0
for item in var_list:
item_name = item.name[7:-2] # "ResNet/" at beginning, ":0" at last
if not item_name in weights.keys():
continue
print item_name
count += 1
sess.run(tf.assign(item, weights[item_name]))
assert(count == len(weights))
snapshot_saver = tf.train.Saver()
snapshot_saver.save(sess, sys.argv[3])