forked from lvpengyuan/corner
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_multiscale.py
405 lines (365 loc) · 20.2 KB
/
eval_multiscale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import os
import torch
import torch.nn as nn
import argparse
import torch.utils.data as data
from torch.autograd import Variable
from data import train_cfg, cfg_512x512, cfg_768x768, cfg_768x1280, cfg_1280x1280, AnnotationTransform, ICDARDetection, detection_collate, TD500Detection, COCODetection, MLTDetection
from utils.augmentations_poly import SSDAugmentation
from utils.logger import setup_logger
from dssd import build_dssd
import numpy as np
import time
import logging
from PIL import Image, ImageDraw
import math
import cv2
from shapely.geometry import box, Polygon
from rpsroi_pooling.modules.rpsroi_pool import RPSRoIPool
def edge_len(x1, y1, x2, y2):
return math.sqrt((x2 - x1)*(x2-x1) + (y2 - y1)*(y2-y1))
def ploy_nms(boxes, thresh):
ploys = [Polygon([[x[0], x[1]], [x[2], x[3]], [x[4], x[5]], [x[6], x[7]]]) for x in boxes]
scores = [x[-1] for x in boxes]
areas = [x.area for x in ploys]
order = np.array(scores).argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
ious = []
for j in order[1:]:
inter = ploys[i].intersection(ploys[j]).area
ious.append(inter/(ploys[i].area + ploys[j].area - inter))
inds = np.where(np.array(ious) <= thresh)[0]
order = order[inds + 1]
return keep
def get_score_rpsroi(bboxes, seg_cuda, rpsroi_pool):
if len(bboxes) > 0:
sample_index = torch.zeros(len(bboxes)).view(-1, 1).cuda()
bboxes = torch.from_numpy(np.array(bboxes)).float().cuda()
rois = Variable(torch.cat((sample_index, bboxes), 1))
seg_cuda = seg_cuda.data
seg_cuda = torch.index_select(seg_cuda, 1, torch.LongTensor([0, 1, 3, 2]).cuda())
seg_cuda = Variable(seg_cuda)
rps_score = rpsroi_pool.forward(seg_cuda, rois)
return rps_score.data.cpu().view(-1, 4).mean(1).numpy()
else:
return np.array([-1])
def get_score(bbox, seg_pred):
## check
seg_pred = seg_pred.numpy()
mask = np.zeros(seg_pred.shape)
c1_x, c2_x, c3_x, c4_x, c_x = (bbox[0] + bbox[2])/2.0, (bbox[2] + bbox[4])/2.0, (bbox[4] + bbox[6])/2.0, (bbox[6] + bbox[0])/2.0, (bbox[0] + bbox[2] + bbox[4] + bbox[6])/4.0
c1_y, c2_y, c3_y, c4_y, c_y = (bbox[1] + bbox[3])/2.0, (bbox[3] + bbox[5])/2.0, (bbox[5] + bbox[7])/2.0, (bbox[7] + bbox[1])/2.0, (bbox[1] + bbox[3] + bbox[5] + bbox[7])/4.0
cv2.fillConvexPoly(mask[0], np.array([[bbox[0], bbox[1]*1.0], [c1_x, c1_y], [c_x, c_y], [c4_x, c4_y]]).astype(np.int32), 1)
cv2.fillConvexPoly(mask[1], np.array([[c1_x, c1_y], [bbox[2]*1.0, bbox[3]*1.0], [c2_x, c2_y], [c_x, c_y]]).astype(np.int32), 1)
cv2.fillConvexPoly(mask[2], np.array([[c_x, c_y], [c2_x, c2_y], [bbox[4]*1.0, bbox[5]*1.0], [c3_x, c3_y]]).astype(np.int32), 1)
cv2.fillConvexPoly(mask[3], np.array([[c4_x, c4_y], [c_x, c_y], [c3_x, c3_y], [bbox[6]*1.0, bbox[7]*1.0]]).astype(np.int32), 1)
score = 0
for i in range(4):
score += (mask[i]*seg_pred[i]).sum()/(mask[i].sum())
score = score/4.0/255.0
return score
def get_boxes(top_left_points, top_right_points, bottom_right_points, bottom_left_points, seg_pred, seg_cuda, rpsroi_pool, thre):
random_box = []
candidate_box = []
# top_line
for top_left_point in top_left_points:
for top_right_point in top_right_points:
if top_left_point[0] < top_right_point[0] and top_left_point[2] > 5 and top_right_point[2] > 5 and max(top_left_point[2], top_right_point[2])/min(top_left_point[2], top_right_point[2]) < 1.5:
#if top_left_point[0] < top_right_point[0]:
side = (top_left_point[2] + top_right_point[2])/2.0
theta = math.atan2(top_right_point[1] - top_left_point[1], top_right_point[0] - top_left_point[0]) + math.pi/2
x3 = top_right_point[0] + math.cos(theta)*side
y3 = top_right_point[1] + math.sin(theta)*side
x4 = top_left_point[0] + math.cos(theta)*side
y4 = top_left_point[1] + math.sin(theta)*side
if edge_len(top_left_point[0], top_left_point[1], top_right_point[0], top_right_point[1]) > 5 and edge_len(top_right_point[0], top_right_point[1], x3, y3) > 5 and edge_len(x3, y3, x4, y4) > 5 and edge_len(x4, y4, top_left_point[0], top_left_point[1]) > 5:
random_box.append([top_left_point[0], top_left_point[1], top_right_point[0], top_right_point[1], x3, y3, x4, y4])
## bottom_line
for bottom_left_point in bottom_left_points:
for bottom_right_point in bottom_right_points:
if bottom_left_point[0] < bottom_right_point[0] and bottom_left_point[2] > 5 and bottom_right_point[2] > 5 and max(bottom_left_point[2], bottom_right_point[2])/min(bottom_left_point[2], bottom_right_point[2]) < 1.5:
#if bottom_left_point[0] < bottom_right_point[0]:
side = (bottom_left_point[2] + bottom_right_point[2])/2.0
theta = math.atan2(bottom_right_point[1] - bottom_left_point[1], bottom_right_point[0] - bottom_left_point[0]) - math.pi/2
x2 = bottom_right_point[0] + math.cos(theta)*side
y2 = bottom_right_point[1] + math.sin(theta)*side
x1 = bottom_left_point[0] + math.cos(theta)*side
y1 = bottom_left_point[1] + math.sin(theta)*side
if edge_len(x1, y1, x2, y2) > 5 and edge_len(x2, y2, bottom_right_point[0], bottom_right_point[1]) > 5 and edge_len(bottom_right_point[0], bottom_right_point[1], bottom_left_point[0], bottom_left_point[1]) > 5 and edge_len(bottom_left_point[0], bottom_left_point[1], x1, y1) > 5:
random_box.append([x1, y1, x2, y2, bottom_right_point[0], bottom_right_point[1], bottom_left_point[0], bottom_left_point[1]])
## left_line
for top_left_point in top_left_points:
for bottom_left_point in bottom_left_points:
if top_left_point[1] < bottom_left_point[1] and top_left_point[2] > 5 and bottom_left_point[2] > 5 and max(top_left_point[2], bottom_left_point[2])/min(top_left_point[2], bottom_left_point[2]) < 1.5:
side = (top_left_point[2] + bottom_left_point[2])/2.0
theta = math.atan2(bottom_left_point[1] - top_left_point[1], bottom_left_point[0] - top_left_point[0]) - math.pi/2
x3 = bottom_left_point[0] + math.cos(theta)*side
y3 = bottom_left_point[1] + math.sin(theta)*side
x2 = top_left_point[0] + math.cos(theta)*side
y2 = top_left_point[1] + math.sin(theta)*side
if edge_len(top_left_point[0], top_left_point[1], bottom_left_point[0], bottom_left_point[1]) > 5 and edge_len(bottom_left_point[0], bottom_left_point[1], x3, y3) > 5 and edge_len(x3, y3, x2, y2) > 5 and edge_len(x2, y2, top_left_point[0], top_left_point[1]) > 5:
random_box.append([top_left_point[0], top_left_point[1], x2, y2, x3, y3, bottom_left_point[0], bottom_left_point[1]])
## right_line
for top_right_point in top_right_points:
for bottom_right_point in bottom_right_points:
if top_right_point[1] < bottom_right_point[1] and top_right_point[2] > 5 and bottom_right_point[2] > 5 and max(top_right_point[2], bottom_right_point[2])/min(top_right_point[2], bottom_right_point[2]) < 1.5:
#if top_right_point[0] < bottom_right_point[0]:
side = (top_right_point[2] + bottom_right_point[2])/2.0
theta = math.atan2(bottom_right_point[1] - top_right_point[1], bottom_right_point[0] - top_right_point[0]) + math.pi/2
x4 = bottom_right_point[0] + math.cos(theta)*side
y4 = bottom_right_point[1] + math.sin(theta)*side
x1 = top_right_point[0] + math.cos(theta)*side
y1 = top_right_point[1] + math.sin(theta)*side
if edge_len(x1, y1, x4, y4) > 5 and edge_len(x4, y4, bottom_right_point[0], bottom_right_point[1]) > 5 and edge_len(bottom_right_point[0], bottom_right_point[1], top_right_point[0], top_right_point[1]) > 5 and edge_len(top_right_point[0], top_right_point[1], x1, y1) > 5:
random_box.append([x1, y1, top_right_point[0], top_right_point[1], bottom_right_point[0], bottom_right_point[1], x4, y4])
scores = get_score_rpsroi(random_box, seg_cuda, rpsroi_pool)
for i in range(len(random_box)):
if scores[i] > thre:
candidate_box.append(random_box[i] + [scores[i]])
return candidate_box
def vis(imgs, boxes, h, w):
img = imgs[0].data.cpu().numpy().transpose(1,2,0) + np.array([122.67891434, 116.66876762, 104.00698793])
img = img.astype(np.uint8)
img = Image.fromarray(img)
img_draw = ImageDraw.Draw(img)
boxes = boxes.data.cpu().numpy()
for box in boxes:
x1, y1, x2, y2, label = box[1]*w, box[2]*h, box[3]*w, box[4]*h, box[5]
if label == 0:
# img_draw.rectangle([x1, y1, x2, y2], outline=(255, 255, 255))
img_draw.ellipse([(x1 + x2)/2 - 2, (y1 + y2)/2 - 2, (x1 + x2)/2 + 2, (y1 + y2)/2 + 2], fill=(255, 255, 255))
elif label == 1:
# img_draw.rectangle([x1, y1, x2, y2], outline=(255, 0, 0))
img_draw.ellipse([(x1 + x2)/2 - 2, (y1 + y2)/2 - 2, (x1 + x2)/2 + 2, (y1 + y2)/2 + 2], fill=(255, 0, 0))
elif label == 2:
# img_draw.rectangle([x1, y1, x2, y2], outline=(0, 255, 0))
img_draw.ellipse([(x1 + x2)/2 - 2, (y1 + y2)/2 - 2, (x1 + x2)/2 + 2, (y1 + y2)/2 + 2], fill=(0, 255, 0))
else:
# img_draw.rectangle([x1, y1, x2, y2], outline=(0, 0, 255))
img_draw.ellipse([(x1 + x2)/2 - 2, (y1 + y2)/2 - 2, (x1 + x2)/2 + 2, (y1 + y2)/2 + 2], fill=(0, 0, 255))
return img
def vis_seg(img, segs, name, dim):
w, h = img.size
seg = segs.contiguous().view(-1, h, w, 4).permute(0,3,1,2).data.cpu()[0]*255
top_left_mask = Image.fromarray(seg[0].numpy().astype(np.uint8), 'L').convert('RGB')
top_right_mask = Image.fromarray(seg[2].numpy().astype(np.uint8), 'L').convert('RGB')
bottom_right_mask = Image.fromarray(seg[4].numpy().astype(np.uint8), 'L').convert('RGB')
bottom_left_mask = Image.fromarray(seg[6].numpy().astype(np.uint8), 'L').convert('RGB')
top_left = Image.blend(img, top_left_mask, 0.5)
top_right = Image.blend(img, top_right_mask, 0.5)
bottom_right = Image.blend(img, bottom_right_mask, 0.5)
bottom_left = Image.blend(img, bottom_left_mask, 0.5)
top_left.save(name + '_1.jpg')
top_right.save(name + '_2.jpg')
bottom_right.save(name + '_3.jpg')
bottom_left.save(name + '_4.jpg')
def show_box(img, boxes, h, w):
img = img[0].numpy().transpose(1,2,0) + np.array([122.67891434, 116.66876762, 104.00698793])
img = img.astype(np.uint8)
img = Image.fromarray(img).resize((w[0], h[0]))
draw = ImageDraw.Draw(img)
for box in boxes:
#draw.polygon(box[:-1], outline=(255, 0, 0))
draw.line([box[0], box[1], box[2], box[3]], width=4, fill=(0, 255, 0))
draw.line([box[2], box[3], box[4], box[5]], width=4, fill=(0, 255, 0))
draw.line([box[4], box[5], box[6], box[7]], width=4, fill=(0, 255, 0))
draw.line([box[6], box[7], box[0], box[1]], width=4, fill=(0, 255, 0))
return img
def eval_img(out, seg_pred, seg_map, rpsroi_pool, img):
img = img[0].data.cpu().numpy().transpose(1,2,0) + np.array([122.67891434, 116.66876762, 104.00698793])
img = img.astype(np.uint8)
img = Image.fromarray(img)
boxes = out.data.cpu().numpy()
top_left_points, top_right_points, bottom_right_points, bottom_left_points = [], [], [], []
w, h = img.size
for box in boxes:
x1, y1, x2, y2, label = box[1]*w, box[2]*h, box[3]*w, box[4]*h, box[5]
if label == 0:
top_left_points.append([(x1 + x2)/2 , (y1 + y2)/2, x2 - x1])
elif label == 1:
top_right_points.append([(x1 + x2)/2 , (y1 + y2)/2, x2 - x1])
elif label == 2:
bottom_right_points.append([(x1 + x2)/2 , (y1 + y2)/2, x2 - x1])
else:
bottom_left_points.append([(x1 + x2)/2 , (y1 + y2)/2, x2 - x1])
seg = seg_pred.contiguous().view(-1, h, w, 4).permute(0,3,1,2).data.cpu()[0]*255
candidate_boxes = get_boxes(top_left_points, top_right_points, bottom_right_points, bottom_left_points, seg, seg_map, rpsroi_pool, 0.65)
return candidate_boxes
def main():
parser = argparse.ArgumentParser(description='Single Shot MultiBox Detector Testing')
parser.add_argument('--resume', dest='resume',
help='initialize with pretrained model weights',
default='./weights/ic13_60.pth', type=str)
parser.add_argument('--version', dest='version', help='512x512, 768x768, 768x1280, 1280x1280', default='768x768', type=str)
parser.add_argument('--dataset', dest='dataset', help = 'ic15, ic13, td500, coco, mlt'
,default='ic13', type=str)
parser.add_argument('--works', dest='num_workers',
help='num_workers to load data',
default=1, type=int)
parser.add_argument('--test_batch_size', dest='test_batch_size',
help='train_batch_size',
default=1, type=int)
parser.add_argument('--out', dest='out',
help='output file dir',
default='./outputs/imgs/ic13/', type=str)
parser.add_argument('--log_file_dir', dest='log_file_dir',
help='log_file_dir',
default='./logs/', type=str)
parser.add_argument('--ssd_dim', default=512, type=int, help='ssd dim')
parser.add_argument('--ic_root', default='../data/ocr/detection/',type=str, help='Location of data root directory')
parser.add_argument('--td_root', default='/home/lpy/Datasets/TD&&TR/',type=str, help='Location of data root directory')
parser.add_argument('--coco_root', default='/home/lpy/Datasets/coco-text/', type=str, help='Location of data root direction')
parser.add_argument('--mlt_root', default='/home/lpy/Datasets/MLT_test/', type=str, help='Location of data root direction')
parser.add_argument('--vis', default=True, type=bool, help='Vis the bounding box')
args = parser.parse_args()
cuda = torch.cuda.is_available()
## setup logger
if os.path.exists(args.log_file_dir) == False:
os.mkdir(args.log_file_dir)
log_file_path = args.log_file_dir + 'eval_' + time.strftime('%Y%m%d_%H%M%S') + '.log'
setup_logger(log_file_path)
##versions = ['512x512', '768x768', '768x1280', '1280x1280']
versions = ['768x768']
cfgs = []
print(args.dataset)
if '512x512' in versions:
cfgs.append(cfg_512x512)
if '768x768' in versions:
cfgs.append(cfg_768x768)
if '768x1280' in versions:
cfgs.append(cfg_768x1280)
if '1280x1280' in versions:
cfgs.append(cfg_1280x1280)
if args.dataset == 'ic15':
test_nums = 500
elif args.dataset == 'ic13':
test_nums = 233
elif args.dataset == 'td500':
test_nums = 200
elif args.dataset == 'coco':
test_nums = 10000
elif args.dataset == 'mlt':
test_nums = 9000
else:
exit()
boxes = []
for i in range(test_nums):
boxes.append([])
ssd_dim = args.ssd_dim
means = (104, 117, 123)
rpsroi_pool = RPSRoIPool(2,2,1,2,1)
rpsroi_pool = rpsroi_pool.cuda()
rpsroi_pool.eval()
if os.path.exists(args.out)==False:
os.makedirs(args.out)
save_dir = args.out + '/' + args.resume.strip().split('_')[-1].split('.')[0] + '/'
if os.path.exists(save_dir) == False:
os.mkdir(save_dir)
seg_dir = save_dir + 'seg/'
box_dir = save_dir + 'box/'
res_dir = save_dir + 'res/'
if os.path.exists(seg_dir) == False:
os.mkdir(seg_dir)
os.mkdir(box_dir)
os.mkdir(res_dir)
logging.info('eval begin')
for cfg in cfgs:
if args.dataset == 'ic15':
dataset = ICDARDetection(args.ic_root, 'val',None, None, '15', dim=cfg['min_dim'])
data_loader = data.DataLoader(dataset, args.test_batch_size, num_workers=args.num_workers,
shuffle=False, pin_memory=True)
elif args.dataset == 'ic13':
dataset = ICDARDetection(args.ic_root, 'val',None, None, '13', dim=cfg['min_dim'])
data_loader = data.DataLoader(dataset, args.test_batch_size, num_workers=args.num_workers,
shuffle=False, pin_memory=True)
elif args.dataset == 'td500':
dataset = TD500Detection(args.td_root, 'val', None, None, aug=False, dim=cfg['min_dim'])
data_loader = data.DataLoader(dataset, args.test_batch_size, num_workers=args.num_workers,
shuffle=False, pin_memory=True)
elif args.dataset == 'coco':
dataset = COCODetection(args.coco_root, 'val', dim=cfg['min_dim'])
data_loader = data.DataLoader(dataset, args.test_batch_size, num_workers=args.num_workers,
shuffle=False, pin_memory=True)
elif args.dataset == 'mlt':
dataset = MLTDetection(args.mlt_root, 'test', dim=cfg['min_dim'])
data_loader = data.DataLoader(dataset, args.test_batch_size, num_workers=args.num_workers,
shuffle=False, pin_memory=True)
else:
exit()
logging.info('dataset initialize done.')
## setup mode
logging.info('loading {}...'.format(args.resume))
net = build_dssd('test', cfg, ssd_dim, 2).cuda()
net.load_weights(args.resume)
net.eval()
logging.info('begin')
for i, sample in enumerate(data_loader, 0):
img, image_name,ori_h, ori_w = sample
# print(image_name)
if i % 100 == 0:
print(i, len(data_loader))
h, w = img.size(2), img.size(3)
if cuda:
img = img.cuda()
img = Variable(img)
out, seg_pred, seg_map =net(img)
candidate_boxes = eval_img(out, seg_pred, seg_map, rpsroi_pool, img)
temp_boxes = []
for box in candidate_boxes:
temp_box = []
for k in range(len(box) - 1):
if k % 2 == 0:
temp_box.append(int(box[k]*ori_w[0]/w))
else:
temp_box.append(int(box[k]*ori_h[0]/h))
temp_box.append(box[-1])
temp_boxes.append(temp_box)
boxes[i] = boxes[i] + temp_boxes
logging.info('forward done')
for i, sample in enumerate(data_loader, 0):
img, image_name,ori_h, ori_w = sample
save_name = image_name[0].split('/')[-1].split('.')[0]
temp_boxes = boxes[i]
keep = ploy_nms(temp_boxes, 0.3)
keep_box = []
for j, item in enumerate(temp_boxes):
if j in keep:
keep_box.append(item)
if args.vis == True:
box_img = show_box(img, keep_box, ori_h, ori_w)
box_img.save(box_dir + '/' + save_name + '.jpg')
# format output
if args.dataset == 'coco':
save_name = save_name.strip().split('_')[-1]
save_name = str(int(save_name))
if args.dataset == 'mlt':
save_name = save_name[3:]
res_name = res_dir + '/' + 'res_' + save_name + '.txt'
fp = open(res_name, 'w')
for box in keep_box:
temp_x = []
temp_y = []
temp = []
for j in range(len(box) - 1):
if j % 2 == 0:
temp_x.append(box[j])
temp.append(str(box[j]))
else:
temp_y.append(box[j])
temp.append(str(box[j]))
if args.dataset == 'ic13':
fp.write(','.join([str(min(temp_x)), str(min(temp_y)), str(max(temp_x)), str(max(temp_y))]) + '\n')
elif args.dataset == 'coco':
#fp.write(','.join([temp[0], temp[1], temp[4], temp[5], box[-1]]) + '\n')
fp.write(','.join([str(min(temp_x)), str(min(temp_y)), str(max(temp_x)), str(max(temp_y)), str(box[-1])]) + '\n')
elif args.dataset == 'mlt':
fp.write(','.join(temp + [str(box[-1])]) + '\n')
else:
fp.write(','.join(temp) + '\n')
fp.close()
logging.info('evaluate done')
if __name__ == '__main__':
main()