The codes of HAWPv2 are placed in the directory of hawp/fsl.
-
Please download the dataset and checkpoints as in readme.md.
-
Run the following command line(s) to evaluate the offical model on the Wireframe dataset and YorkUrban dataset by
Evaluation on the Wireframe dataset.
python -m hawp.fsl.benchmark configs/hawpv2.yaml \ --ckpt checkpoints/hawpv2-edb9b23f.pth \ --dataset wireframe
Evaluation on the YorkUrban dataset.
python -m hawp.fsl.benchmark configs/hawpv2.yaml \ --ckpt checkpoints/hawpv2-edb9b23f.pth \ --dataset wireframe
Dataset | sAP-5 | sAP-10 | sAP-15 | command line | comment |
---|---|---|---|---|---|
Wireframe | 65.8 | 69.8 | 71.4 | python -m hawp.fsl.benchmark configs/hawpv2.yaml --ckpt checkpoints/hawpv2-edb9b23f.pth --dataset wireframe --jhm=0.001 |
jhm = 0.001 |
Wireframe | 65.7 | 69.8 | 71.4 | python -m hawp.fsl.benchmark configs/hawpv2.yaml --ckpt checkpoints/hawpv2-edb9b23f.pth --dataset wireframe --jhm=0.005 |
jhm = 0.005 |
Wireframe | 65.7 | 69.7 | 71.3 | python -m hawp.fsl.benchmark configs/hawpv2.yaml --ckpt checkpoints/hawpv2-edb9b23f.pth --dataset wireframe --jhm=0.008 |
jhm = 0.008 (default setting) |
YorkUrban | 29.0 | 31.4 | 32.8 | python -m hawp.fsl.benchmark configs/hawpv2.yaml --ckpt checkpoints/hawpv2-edb9b23f.pth --dataset york --jhm=0.005 |
jhm = 0.001 |
YorkUrban | 28.9 | 31.4 | 32.7 | python -m hawp.fsl.benchmark configs/hawpv2.yaml --ckpt checkpoints/hawpv2-edb9b23f.pth --dataset york --jhm=0.005 |
jhm = 0.005 |
YorkUrban | 28.8 | 31.3 | 32.6 | python -m hawp.fsl.benchmark configs/hawpv2.yaml --ckpt checkpoints/hawpv2-edb9b23f.pth --dataset york --jhm=0.005 |
jhm = 0.008 |
-
Run the following command line to train the HAWPv2 on the Wireframe dataset.
python -m hawp.fsl.train configs/hawpv2.yaml --logdir outputs
-
The usage of hawp.fsl.train is as follow:
HAWPv2 Training positional arguments: config path to config file optional arguments: -h, --help show this help message and exit --logdir LOGDIR --resume RESUME --clean --seed SEED --tf32 toggle on the TF32 of pytorch --dtm {True,False} toggle the deterministic option of CUDNN. This option will affect the replication of experiments