Skip to content

Latest commit

 

History

History
61 lines (49 loc) · 2.57 KB

HAWPv2.md

File metadata and controls

61 lines (49 loc) · 2.57 KB

HAWPv2: Learning Wireframes via Fully-Supervised Learning

The codes of HAWPv2 are placed in the directory of hawp/fsl.

Quickstart & Evaluation

  • Please download the dataset and checkpoints as in readme.md.

  • Run the following command line(s) to evaluate the offical model on the Wireframe dataset and YorkUrban dataset by

    Evaluation on the Wireframe dataset.
    python -m hawp.fsl.benchmark configs/hawpv2.yaml \
      --ckpt checkpoints/hawpv2-edb9b23f.pth \
      --dataset wireframe
    Evaluation on the YorkUrban dataset.
    python -m hawp.fsl.benchmark configs/hawpv2.yaml \
      --ckpt checkpoints/hawpv2-edb9b23f.pth \
      --dataset wireframe

Evaluation Results

Dataset sAP-5 sAP-10 sAP-15 command line comment
Wireframe 65.8 69.8 71.4 python -m hawp.fsl.benchmark configs/hawpv2.yaml --ckpt checkpoints/hawpv2-edb9b23f.pth --dataset wireframe --jhm=0.001 jhm = 0.001
Wireframe 65.7 69.8 71.4 python -m hawp.fsl.benchmark configs/hawpv2.yaml --ckpt checkpoints/hawpv2-edb9b23f.pth --dataset wireframe --jhm=0.005 jhm = 0.005
Wireframe 65.7 69.7 71.3 python -m hawp.fsl.benchmark configs/hawpv2.yaml --ckpt checkpoints/hawpv2-edb9b23f.pth --dataset wireframe --jhm=0.008 jhm = 0.008 (default setting)
YorkUrban 29.0 31.4 32.8 python -m hawp.fsl.benchmark configs/hawpv2.yaml --ckpt checkpoints/hawpv2-edb9b23f.pth --dataset york --jhm=0.005 jhm = 0.001
YorkUrban 28.9 31.4 32.7 python -m hawp.fsl.benchmark configs/hawpv2.yaml --ckpt checkpoints/hawpv2-edb9b23f.pth --dataset york --jhm=0.005 jhm = 0.005
YorkUrban 28.8 31.3 32.6 python -m hawp.fsl.benchmark configs/hawpv2.yaml --ckpt checkpoints/hawpv2-edb9b23f.pth --dataset york --jhm=0.005 jhm = 0.008

Training

  • Run the following command line to train the HAWPv2 on the Wireframe dataset.

    python -m hawp.fsl.train configs/hawpv2.yaml --logdir outputs
    
  • The usage of hawp.fsl.train is as follow:

    HAWPv2 Training
    
    positional arguments:
      config              path to config file
    
    optional arguments:
      -h, --help          show this help message and exit
      --logdir LOGDIR
      --resume RESUME
      --clean
      --seed SEED
      --tf32              toggle on the TF32 of pytorch
      --dtm {True,False}  toggle the deterministic option of CUDNN. This option will affect the replication of experiments