-
Notifications
You must be signed in to change notification settings - Fork 0
/
builder.py
268 lines (227 loc) · 9.31 KB
/
builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import torch
import torch.nn as nn
from logo.backbone import Encoder_Base
from torch.nn.functional import softplus
import torch.nn.functional as F
class MoCo_LoGo(nn.Module):
"""
Build a MoCo model with: a query encoder, a key encoder, and a queue
"""
def __init__(self, arch, dim=128, K=65536, m=0.999, T=0.07, dataset='imagenet100'):
"""
dim: feature dimension (default: 128)
K: queue size; number of negative keys (default: 65536)
m: moco momentum of updating key encoder (default: 0.999)
T: softmax temperature (default: 0.07)
"""
super(MoCo_LoGo, self).__init__()
self.K = K
self.m = m
self.T = T
# create the encoders
# num_classes is the output fc dimension
self.encoder_q = Encoder_Base(arch, dim, dataset, 'moco')
self.encoder_k = Encoder_Base(arch, dim, dataset, 'moco')
for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()):
param_k.data.copy_(param_q.data) # initialize
param_k.requires_grad = False # not update by gradient
# create the queue
self.register_buffer("queue", torch.randn(dim, K))
self.queue = nn.functional.normalize(self.queue, dim=0)
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
@torch.no_grad()
def _momentum_update_key_encoder(self):
"""
Momentum update of the key encoder
"""
for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()):
param_k.data = param_k.data * self.m + param_q.data * (1. - self.m)
@torch.no_grad()
def _dequeue_and_enqueue(self, keys):
# gather keys before updating queue
keys = concat_all_gather(keys)
batch_size = keys.shape[0]
ptr = int(self.queue_ptr)
assert self.K % batch_size == 0 # for simplicity
# replace the keys at ptr (dequeue and enqueue)
self.queue[:, ptr:ptr + batch_size] = keys.T
ptr = (ptr + batch_size) % self.K # move pointer
self.queue_ptr[0] = ptr
@torch.no_grad()
def _batch_shuffle_ddp(self, x):
"""
Batch shuffle, for making use of BatchNorm.
*** Only support DistributedDataParallel (DDP) model. ***
"""
# gather from all gpus
batch_size_this = x.shape[0]
x_gather = concat_all_gather(x)
batch_size_all = x_gather.shape[0]
num_gpus = batch_size_all // batch_size_this
# random shuffle index
idx_shuffle = torch.randperm(batch_size_all).cuda()
# broadcast to all gpus
torch.distributed.broadcast(idx_shuffle, src=0)
# index for restoring
idx_unshuffle = torch.argsort(idx_shuffle)
# shuffled index for this gpu
gpu_idx = torch.distributed.get_rank()
idx_this = idx_shuffle.view(num_gpus, -1)[gpu_idx]
return x_gather[idx_this], idx_unshuffle
@torch.no_grad()
def _batch_unshuffle_ddp(self, x, idx_unshuffle):
"""
Undo batch shuffle.
*** Only support DistributedDataParallel (DDP) model. ***
"""
# gather from all gpus
batch_size_this = x.shape[0]
x_gather = concat_all_gather(x)
batch_size_all = x_gather.shape[0]
num_gpus = batch_size_all // batch_size_this
# restored index for this gpu
gpu_idx = torch.distributed.get_rank()
idx_this = idx_unshuffle.view(num_gpus, -1)[gpu_idx]
return x_gather[idx_this]
def forward(self, img, local = False):
"""
Input:
img: crops from a batch of instances
Output:
q: query feature
k: key feature
neg: feature from negative instances
"""
# compute query features
b = img[0].shape[0]
for idx, im in enumerate(img):
_, _q = self.encoder_q(im)
if idx == 0:
q = _q
else:
q = torch.cat([q, _q])
q = nn.functional.normalize(q)
# compute key features
with torch.no_grad(): # no gradient to keys
self._momentum_update_key_encoder()
if local is False:
with torch.no_grad():
# update the key encoder
# shuffle for making use of BN
for idx, im in enumerate(img):
im, idx_unshuffle = self._batch_shuffle_ddp(im)
_, _k = self.encoder_k(im) # keys: NxC
_k = nn.functional.normalize(_k, dim=1)
# undo shuffle
_k = self._batch_unshuffle_ddp(_k, idx_unshuffle)
if idx == 0:
k = _k
else:
k = torch.cat([k, _k])
neg = self.queue.clone().detach()
self._dequeue_and_enqueue(k[:2 * b])
return q, k, neg
else:
# with torch.no_grad():
# self._momentum_update_key_encoder()
return q
class Regressor_cos(nn.Module):
"""
Build a MLP kernel for LoGo Regressor
"""
def __init__(self, fea_dim=128, mlp_dim=256):
"""
fea_dim: feature dim after projection head (default:128)
mlp_dim: dim of hidden layers of Regressor
"""
super(Regressor_cos, self).__init__()
self.input_dim = fea_dim*2
self.fea_dim = fea_dim
self.mlp_dim = mlp_dim
self.mlp = nn.Sequential(
nn.Linear(in_features=self.input_dim, out_features=self.mlp_dim),
nn.BatchNorm1d(self.mlp_dim),
nn.ReLU(),
nn.Linear(in_features=self.mlp_dim, out_features=self.mlp_dim),
nn.BatchNorm1d(self.mlp_dim),
nn.ReLU(),
# nn.Linear(in_features=self.mlp_dim, out_features=self.mlp_dim),
# nn.BatchNorm1d(self.mlp_dim),
# nn.ReLU(),
# nn.Linear(in_features=self.mlp_dim, out_features=self.mlp_dim),
# nn.BatchNorm1d(self.mlp_dim),
# nn.ReLU(),
# nn.Linear(in_features=self.mlp_dim, out_features=1)
nn.Linear(in_features=self.mlp_dim, out_features=self.fea_dim)
)
def forward(self, x, input_type = 'neg'):
output = self.mlp(x)
if input_type == 'neg':
# When local crops from different instances
# output = softplus(output)
# z1, z2 = output[:, :self.fea_dim], output[:, self.fea_dim:]
# output = nn.functional.cosine_similarity(z1, z2)
z1 = x[:, self.fea_dim:]
z2 = output
#z2 = nn.functional.normalize(z2)
output = nn.functional.cosine_similarity(z1, z2)
elif input_type == 'pos':
# When local crops from same instance
# output = softplus(-output)
# z1, z2 = output[:, :self.fea_dim], output[:, self.fea_dim:]
# output = -nn.functional.cosine_similarity(z1, z2)
z1 = x[:, self.fea_dim:]
z2 = output
#z2 = nn.functional.normalize(z2)
output = -nn.functional.cosine_similarity(z1, z2)
return output
class Regressor_softplus(nn.Module):
"""
Build a MLP kernel for LoGo Regressor
"""
def __init__(self, fea_dim=128, mlp_dim=256):
"""
fea_dim: feature dim after projection head (default:128)
mlp_dim: dim of hidden layers of Regressor
"""
super(Regressor_softplus, self).__init__()
self.input_dim = fea_dim*2
self.fea_dim = fea_dim
self.mlp_dim = mlp_dim
self.mlp = nn.Sequential(
nn.Linear(in_features=self.input_dim, out_features=self.mlp_dim),
nn.BatchNorm1d(self.mlp_dim),
nn.ReLU(),
nn.Linear(in_features=self.mlp_dim, out_features=self.mlp_dim),
nn.BatchNorm1d(self.mlp_dim),
nn.ReLU(),
# nn.Linear(in_features=self.mlp_dim, out_features=self.mlp_dim),
# nn.BatchNorm1d(self.mlp_dim),
# nn.ReLU(),
# nn.Linear(in_features=self.mlp_dim, out_features=self.mlp_dim),
# nn.BatchNorm1d(self.mlp_dim),
# nn.ReLU(),
# nn.Linear(in_features=self.mlp_dim, out_features=1)
nn.Linear(in_features=self.mlp_dim, out_features=1)
)
def forward(self, x, input_type = 'neg'):
output = self.mlp(x)
if input_type == 'neg':
# When local crops from different instances
output = softplus(output)
elif input_type == 'pos':
# When local crops from same instance
output = softplus(-output)
return output
#utils
@torch.no_grad()
def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
tensors_gather = [torch.ones_like(tensor)
for _ in range(torch.distributed.get_world_size())]
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
output = torch.cat(tensors_gather, dim=0)
return output