forked from mil-ad/snip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
architectures.py
49 lines (46 loc) · 2.06 KB
/
architectures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
from torchvision.models.resnet import resnet50
import torch.backends.cudnn as cudnn
from archs.cifar_resnet import resnet as resnet_cifar
from archs.cifar_resnet import lenet300
from archs.cifar_resnet import lenet5
from archs.cifar_resnet import fcn, wide_resnet
from archs.cifar_resnet import vgg, resnet20, resnet32, vgg_16
from torch.nn.functional import interpolate
# resnet50 - the classic ResNet-50, sized for ImageNet
# cifar_resnet20 - a 20-layer residual network sized for CIFAR
# cifar_resnet110 - a 110-layer residual network sized for CIFAR
ARCHITECTURES = ["resnet50", "cifar_resnet20", "cifar_resnet32", "cifar_resnet110", "lenet300", "lenet5", "fcn", "wide_resnet", "vgg19",
"resnet20", "resnet32", "vgg16"]
def get_architecture(arch: str, dataset: str, device) -> torch.nn.Module:
""" Return a neural network (with random weights)
:param arch: the architecture - should be in the ARCHITECTURES list above
:param dataset: the dataset - should be in the datasets.DATASETS list
:return: a Pytorch module
"""
if arch == "resnet50" and dataset == "imagenet":
model = torch.nn.DataParallel(resnet50(pretrained=False)).to(device)
cudnn.benchmark = True
elif arch == "cifar_resnet20":
model = resnet_cifar(depth=20, num_classes=10).to(device)
elif arch == "cifar_resnet32":
model = resnet_cifar(depth=32, num_classes=10).to(device)
elif arch == "cifar_resnet110":
model = resnet_cifar(depth=110, num_classes=10).to(device)
elif arch == "lenet300":
model = lenet300(num_classes=10).to(device)
elif arch == "lenet5":
model = lenet5(num_classes=10).to(device)
elif arch == "fcn":
model = fcn(num_classes=10).to(device)
elif arch == "vgg19":
model = vgg().to(device)
elif arch == "vgg16":
model = vgg_16().to(device)
elif arch == "wide_resnet":
model = wide_resnet().to(device)
elif arch == "resnet20":
model = resnet20().to(device)
elif arch == "resnet32":
model = resnet32().to(device)
return model