This repository has been archived by the owner on May 21, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
operations.py
181 lines (142 loc) · 5.25 KB
/
operations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import torch
import torch.nn as nn
# OPS is a set of layers with same input/output channel.
OPS = {
'none': lambda C, stride, affine: Zero(stride),
'avg_pool_3x3': lambda C, stride, affine: nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False),
'max_pool_3x3': lambda C, stride, affine: nn.MaxPool2d(3, stride=stride, padding=1),
'skip_connect': lambda C, stride, affine: Identity() if stride == 1 else FactorizedReduce(C, C, affine=affine),
'sep_conv_3x3': lambda C, stride, affine: SepConv(C, C, 3, stride, 1, affine=affine),
'sep_conv_5x5': lambda C, stride, affine: SepConv(C, C, 5, stride, 2, affine=affine),
'sep_conv_7x7': lambda C, stride, affine: SepConv(C, C, 7, stride, 3, affine=affine),
'dil_conv_3x3': lambda C, stride, affine: DilConv(C, C, 3, stride, 2, 2, affine=affine),
'dil_conv_5x5': lambda C, stride, affine: DilConv(C, C, 5, stride, 4, 2, affine=affine),
'conv_7x1_1x7': lambda C, stride, affine: nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C, C, (1, 7), stride=(1, stride),
padding=(0, 3), bias=False),
nn.Conv2d(C, C, (7, 1), stride=(stride, 1),
padding=(3, 0), bias=False),
nn.BatchNorm2d(C, affine=affine)
),
}
class ReLUConvBN(nn.Module):
"""
Stack of relu-conv-bn
"""
def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
"""
:param C_in:
:param C_out:
:param kernel_size:
:param stride:
:param padding:
:param affine:
"""
super(ReLUConvBN, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_out, kernel_size, stride=stride,
padding=padding, bias=False),
nn.BatchNorm2d(C_out, affine=affine)
)
def forward(self, x):
return self.op(x)
class DilConv(nn.Module):
"""
relu-dilated conv-bn
"""
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine=True):
"""
:param C_in:
:param C_out:
:param kernel_size:
:param stride:
:param padding: 2/4
:param dilation: 2
:param affine:
"""
super(DilConv, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding,
dilation=dilation,
groups=C_in, bias=False),
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False),
nn.BatchNorm2d(C_out, affine=affine),
)
def forward(self, x):
return self.op(x)
class SepConv(nn.Module):
"""
implemented separate convolution via pytorch groups parameters
"""
def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
"""
:param C_in:
:param C_out:
:param kernel_size:
:param stride:
:param padding: 1/2
:param affine:
"""
super(SepConv, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_in, kernel_size=kernel_size,
stride=stride, padding=padding, groups=C_in, bias=False),
# depth-wise conv
nn.Conv2d(C_in, C_in, kernel_size=1, padding=0,
bias=False), # point-wise conv
nn.BatchNorm2d(C_in, affine=affine),
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=1, padding=padding,
groups=C_in, bias=False),
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False),
nn.BatchNorm2d(C_out, affine=affine),
)
def forward(self, x):
return self.op(x)
class Identity(nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
class Zero(nn.Module):
"""
zero by stride
"""
def __init__(self, stride):
super(Zero, self).__init__()
self.stride = stride
def forward(self, x):
if self.stride == 1:
return x.mul(0.)
return x[:, :, ::self.stride, ::self.stride].mul(0.)
class FactorizedReduce(nn.Module):
"""
reduce feature maps height/width by half while keeping channel same
"""
def __init__(self, C_in, C_out, affine=True):
"""
:param C_in:
:param C_out:
:param affine:
"""
super(FactorizedReduce, self).__init__()
assert C_out % 2 == 0
self.relu = nn.ReLU(inplace=False)
self.conv_1 = nn.Conv2d(C_in, C_out // 2, 1,
stride=2, padding=0, bias=False)
self.conv_2 = nn.Conv2d(C_in, C_out // 2, 1,
stride=2, padding=0, bias=False)
self.bn = nn.BatchNorm2d(C_out, affine=affine)
def forward(self, x):
x = self.relu(x)
# x: torch.Size([32, 32, 32, 32])
# conv1: [b, c_out//2, d//2, d//2]
# conv2: []
# out: torch.Size([32, 32, 16, 16])
out = torch.cat([self.conv_1(x), self.conv_2(x[:, :, 1:, 1:])], dim=1)
out = self.bn(out)
return out