forked from bevyengine/bevy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
function_reflection.rs
220 lines (186 loc) · 10.5 KB
/
function_reflection.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
//! This example demonstrates how functions can be called dynamically using reflection.
//!
//! Function reflection is useful for calling regular Rust functions in a dynamic context,
//! where the types of arguments, return values, and even the function itself aren't known at compile time.
//!
//! This can be used for things like adding scripting support to your application,
//! processing deserialized reflection data, or even just storing type-erased versions of your functions.
use bevy::reflect::{
func::{
ArgList, DynamicFunction, DynamicFunctionMut, FunctionResult, IntoFunction,
IntoFunctionMut, Return, SignatureInfo,
},
PartialReflect, Reflect,
};
// Note that the `dbg!` invocations are used purely for demonstration purposes
// and are not strictly necessary for the example to work.
fn main() {
// There are times when it may be helpful to store a function away for later.
// In Rust, we can do this by storing either a function pointer or a function trait object.
// For example, say we wanted to store the following function:
fn add(left: i32, right: i32) -> i32 {
left + right
}
// We could store it as either of the following:
let fn_pointer: fn(i32, i32) -> i32 = add;
let fn_trait_object: Box<dyn Fn(i32, i32) -> i32> = Box::new(add);
// And we can call them like so:
let result = fn_pointer(2, 2);
assert_eq!(result, 4);
let result = fn_trait_object(2, 2);
assert_eq!(result, 4);
// However, you'll notice that we have to know the types of the arguments and return value at compile time.
// This means there's not really a way to store or call these functions dynamically at runtime.
// Luckily, Bevy's reflection crate comes with a set of tools for doing just that!
// We do this by first converting our function into the reflection-based `DynamicFunction` type
// using the `IntoFunction` trait.
let function: DynamicFunction<'static> = dbg!(add.into_function());
// This time, you'll notice that `DynamicFunction` doesn't take any information about the function's arguments or return value.
// This is because `DynamicFunction` checks the types of the arguments and return value at runtime.
// Now we can generate a list of arguments:
let args: ArgList = dbg!(ArgList::new().push_owned(2_i32).push_owned(2_i32));
// And finally, we can call the function.
// This returns a `Result` indicating whether the function was called successfully.
// For now, we'll just unwrap it to get our `Return` value,
// which is an enum containing the function's return value.
let return_value: Return = dbg!(function.call(args).unwrap());
// The `Return` value can be pattern matched or unwrapped to get the underlying reflection data.
// For the sake of brevity, we'll just unwrap it here and downcast it to the expected type of `i32`.
let value: Box<dyn PartialReflect> = return_value.unwrap_owned();
assert_eq!(value.try_take::<i32>().unwrap(), 4);
// The same can also be done for closures that capture references to their environment.
// Closures that capture their environment immutably can be converted into a `DynamicFunction`
// using the `IntoFunction` trait.
let minimum = 5;
let clamp = |value: i32| value.max(minimum);
let function: DynamicFunction = dbg!(clamp.into_function());
let args = dbg!(ArgList::new().push_owned(2_i32));
let return_value = dbg!(function.call(args).unwrap());
let value: Box<dyn PartialReflect> = return_value.unwrap_owned();
assert_eq!(value.try_take::<i32>().unwrap(), 5);
// We can also handle closures that capture their environment mutably
// using the `IntoFunctionMut` trait.
let mut count = 0;
let increment = |amount: i32| count += amount;
let closure: DynamicFunctionMut = dbg!(increment.into_function_mut());
let args = dbg!(ArgList::new().push_owned(5_i32));
// Because `DynamicFunctionMut` mutably borrows `total`,
// it will need to be dropped before `total` can be accessed again.
// This can be done manually with `drop(closure)` or by using the `DynamicFunctionMut::call_once` method.
dbg!(closure.call_once(args).unwrap());
assert_eq!(count, 5);
// Generic functions can also be converted into a `DynamicFunction`,
// however, they will need to be manually monomorphized first.
fn stringify<T: ToString>(value: T) -> String {
value.to_string()
}
// We have to manually specify the concrete generic type we want to use.
let function = stringify::<i32>.into_function();
let args = ArgList::new().push_owned(123_i32);
let return_value = function.call(args).unwrap();
let value: Box<dyn PartialReflect> = return_value.unwrap_owned();
assert_eq!(value.try_take::<String>().unwrap(), "123");
// To make things a little easier, we can also "overload" functions.
// This makes it so that a single `DynamicFunction` can represent multiple functions,
// and the correct one is chosen based on the types of the arguments.
// Each function overload must have a unique argument signature.
let function = stringify::<i32>
.into_function()
.with_overload(stringify::<f32>);
// Now our `function` accepts both `i32` and `f32` arguments.
let args = ArgList::new().push_owned(1.23_f32);
let return_value = function.call(args).unwrap();
let value: Box<dyn PartialReflect> = return_value.unwrap_owned();
assert_eq!(value.try_take::<String>().unwrap(), "1.23");
// Function overloading even allows us to have a variable number of arguments.
let function = (|| 0)
.into_function()
.with_overload(|a: i32| a)
.with_overload(|a: i32, b: i32| a + b)
.with_overload(|a: i32, b: i32, c: i32| a + b + c);
let args = ArgList::new()
.push_owned(1_i32)
.push_owned(2_i32)
.push_owned(3_i32);
let return_value = function.call(args).unwrap();
let value: Box<dyn PartialReflect> = return_value.unwrap_owned();
assert_eq!(value.try_take::<i32>().unwrap(), 6);
// As stated earlier, `IntoFunction` works for many kinds of simple functions.
// Functions with non-reflectable arguments or return values may not be able to be converted.
// Generic functions are also not supported (unless manually monomorphized like `foo::<i32>.into_function()`).
// Additionally, the lifetime of the return value is tied to the lifetime of the first argument.
// However, this means that many methods (i.e. functions with a `self` parameter) are also supported:
#[derive(Reflect, Default)]
struct Data {
value: String,
}
impl Data {
fn set_value(&mut self, value: String) {
self.value = value;
}
// Note that only `&'static str` implements `Reflect`.
// To get around this limitation we can use `&String` instead.
fn get_value(&self) -> &String {
&self.value
}
}
let mut data = Data::default();
let set_value = dbg!(Data::set_value.into_function());
let args = dbg!(ArgList::new().push_mut(&mut data)).push_owned(String::from("Hello, world!"));
dbg!(set_value.call(args).unwrap());
assert_eq!(data.value, "Hello, world!");
let get_value = dbg!(Data::get_value.into_function());
let args = dbg!(ArgList::new().push_ref(&data));
let return_value = dbg!(get_value.call(args).unwrap());
let value: &dyn PartialReflect = return_value.unwrap_ref();
assert_eq!(value.try_downcast_ref::<String>().unwrap(), "Hello, world!");
// For more complex use cases, you can always create a custom `DynamicFunction` manually.
// This is useful for functions that can't be converted via the `IntoFunction` trait.
// For example, this function doesn't implement `IntoFunction` due to the fact that
// the lifetime of the return value is not tied to the lifetime of the first argument.
fn get_or_insert(value: i32, container: &mut Option<i32>) -> &i32 {
if container.is_none() {
*container = Some(value);
}
container.as_ref().unwrap()
}
let get_or_insert_function = dbg!(DynamicFunction::new(
|mut args: ArgList| -> FunctionResult {
// The `ArgList` contains the arguments in the order they were pushed.
// The `DynamicFunction` will validate that the list contains
// exactly the number of arguments we expect.
// We can retrieve them out in order (note that this modifies the `ArgList`):
let value = args.take::<i32>()?;
let container = args.take::<&mut Option<i32>>()?;
// We could have also done the following to make use of type inference:
// let value = args.take_owned()?;
// let container = args.take_mut()?;
Ok(Return::Ref(get_or_insert(value, container)))
},
// Functions can be either anonymous or named.
// It's good practice, though, to try and name your functions whenever possible.
// This makes it easier to debug and is also required for function registration.
// We can either give it a custom name or use the function's type name as
// derived from `std::any::type_name_of_val`.
SignatureInfo::named(std::any::type_name_of_val(&get_or_insert))
// We can always change the name if needed.
// It's a good idea to also ensure that the name is unique,
// such as by using its type name or by prefixing it with your crate name.
.with_name("my_crate::get_or_insert")
// Since our function takes arguments, we should provide that argument information.
// This is used to validate arguments when calling the function.
// And it aids consumers of the function with their own validation and debugging.
// Arguments should be provided in the order they are defined in the function.
.with_arg::<i32>("value")
.with_arg::<&mut Option<i32>>("container")
// We can provide return information as well.
.with_return::<&i32>(),
));
let mut container: Option<i32> = None;
let args = dbg!(ArgList::new().push_owned(5_i32).push_mut(&mut container));
let value = dbg!(get_or_insert_function.call(args).unwrap()).unwrap_ref();
assert_eq!(value.try_downcast_ref::<i32>(), Some(&5));
let args = dbg!(ArgList::new().push_owned(500_i32).push_mut(&mut container));
let value = dbg!(get_or_insert_function.call(args).unwrap()).unwrap_ref();
assert_eq!(value.try_downcast_ref::<i32>(), Some(&5));
}