Skip to content

Latest commit

 

History

History
294 lines (226 loc) · 9.9 KB

TRAINING.md

File metadata and controls

294 lines (226 loc) · 9.9 KB

Training

Here we will walk through the process of training your own model on the CLEVR dataset, and finetuning the model on the CLEVR-Humans dataset. All training code runs on GPU, and assumes that CUDA and cuDNN already been installed.

Preprocessing CLEVR

Before you can train any models, you need to download the CLEVR dataset; you also need to extract features for the images, and preprocess the questions and programs.

Step 1: Download the data

First you need to download and unpack the CLEVR dataset. For the purpose of this tutorial we assume that all data will be stored in a new directory called data/:

mkdir data
wget https://dl.fbaipublicfiles.com/clevr/CLEVR_v1.0.zip -O data/CLEVR_v1.0.zip
unzip data/CLEVR_v1.0.zip -d data

Step 2: Extract Image Features

Extract ResNet-101 features for the CLEVR train, val, and test images with the following commands:

python scripts/extract_features.py \
  --input_image_dir data/CLEVR_v1.0/images/train \
  --output_h5_file data/train_features.h5

python scripts/extract_features.py \
  --input_image_dir data/CLEVR_v1.0/images/val \
  --output_h5_file data/val_features.h5

python scripts/extract_features.py \
  --input_image_dir data/CLEVR_v1.0/images/test \
  --output_h5_file data/test_features.h5

Step 3: Preprocess Questions

Preprocess the questions and programs for the CLEVR train, val, and test sets with the following commands:

python scripts/preprocess_questions.py \
  --input_questions_json data/CLEVR_v1.0/questions/CLEVR_train_questions.json \
  --output_h5_file data/train_questions.h5 \
  --output_vocab_json data/vocab.json

python scripts/preprocess_questions.py \
  --input_questions_json data/CLEVR_v1.0/questions/CLEVR_val_questions.json \
  --output_h5_file data/val_questions.h5 \
  --input_vocab_json data/vocab.json
  
python scripts/preprocess_questions.py \
  --input_questions_json data/CLEVR_v1.0/questions/CLEVR_test_questions.json \
  --output_h5_file data/test_questions.h5 \
  --input_vocab_json data/vocab.json

When preprocessing questions, we create a file vocab.json which stores the mapping between tokens and indices for questions and programs. We create this vocabulary when preprocessing the training questions, then reuse the same vocabulary file for the val and test questions.

Training on CLEVR

Models are trained through a three-step procedure:

  1. Train the program generator using a small number of ground-truth programs
  2. Train the execution engine using predicted outputs from the trained program generator
  3. Jointly fine-tune both the program generator and the execution engine without any ground-truth programs

Step 1: Train the Program Generator

In this step we use a small number of ground-truth programs to train the program generator:

python scripts/train_model.py \
  --model_type PG \
  --num_train_samples 18000 \
  --num_iterations 20000 \
  --checkpoint_every 1000 \
  --checkpoint_path data/program_generator.pt

Step 2: Train the Execution Engine

In this step we train the execution engine, using programs predicted from the program generator in the previous step:

python scripts/train_model.py \
  --model_type EE \
  --program_generator_start_from data/program_generator.py \
  --num_iterations 100000 \
  --checkpoint_path data/execution_engine.pt

Step 3: Jointly train entire model

In this step we jointly train the program generator and execution engine using REINFORCE:

python scripts/train_model.py \
  --model_type PG+EE \
  --program_generator_start_from data/program_generator.pt \
  --execution_engine_start_from data/execution_engine.pt \
  --checkpoint_path data/joint_pg_ee.pt

Step 4: Test the model

You can use the run_model.py script to test your model on the entire validation and test sets. To test the version of the model before finetuning on the val set:

python scripts/run_model.py \
  --program_generator data/program_generator.pt \
  --execution_engine data/execution_engine.pt \
  --input_question_h5 data/val_questions.h5 \
  --input_features_h5 data/val_features.h5

You can test the jointly finetuned model like this:

python scripts/run_model.py \
  --program_generator data/joint_pg_ee.pt \
  --execution_engine data/joint_pg_ee.pt \
  --input_question_h5 data/val_questions.h5 \
  --input_features_h5 data/val_features.h5

Training baselines on CLEVR

Step 1: Train the model

You can use the train_model.py script to train the LSTM, CNN+LSTM, and CNN+LSTM+SA baselines.

For example you can train CNN+LSTM+SA+MLP like this:

python scripts/train_model.py \
  --model_type CNN+LSTM+SA \
  --classifier_fc_dims 1024 \
  --num_iterations 400000 \
  --checkpoint_path data/cnn_lstm_sa_mlp.pt

Step 2: Test the model

You can use the run_model.py script to test baseline models on the entire validation or test sets. You can run the model from the previous step on the entire val set like this:

python scripts/run_model.py \
  --baseline_model data/cnn_lstm_mlp.pt \
  --input_question_h5 data/val_questions.h5 \
  --input_features_h5 data/val_features.h5

Preprocessing CLEVR-Humans

Step 1: Download the data

You can download the CLEVR-Humans dataset like this:

wget http://cs.stanford.edu/people/jcjohns/iep/CLEVR-Humans.zip -O data/CLEVR-Humans.zip
unzip data/CLEVR-Humans.zip -d data

Step 2: Preprocess the data

Preprocessing the CLEVR-Humans dataset is a bit tricky, since it contains words that do not appear in the CLEVR dataset. In addition, unlike CLEVR, we wish to replace infrequent words (which may be misspellings or typos) with a special <UNK> token. Furthermore, in order to use models trained on CLEVR on CLEVR-Humans, we need to ensure that the vocabulary we compute on CLEVR-Humans is compatible with that from CLEVR which we preprocessed earlier.

All of these issues are handled by the preprocess_questions.py script, but we need to pass a few extra flags to control this behavior.

python scripts/preprocess_questions.py \
  --input_questions_json data/CLEVR_humans/CLEVR_humans_train.json \
  --input_vocab_json data/input_vocab.json \
  --output_h5_file data/train_human_questions.h5 \
  --output_vocab_json data/human_vocab.json \
  --expand_vocab 1 \
  --unk_threshold 10 \
  --encode_unk 1 \
  
python scripts/preprocess_questions.py \
  --input_questions_json data/CLEVR_humans/CLEVR_humans_val.json \
  --input_vocab_json data/human_vocab.json \
  --output_h5_file data/val_human_questions.h5 \
  --encode_unk 1
  
python scripts/preprocess_questions.py \
  --input_questions_json data/CLEVR_humans/CLEVR_humans_test.json \
  --input_vocab_json data/human_vocab.json \
  --output_h5_file data/test_human_questions.h5 \
  --encode_unk 1

Finetuning on CLEVR-Humans

Step 1: Finetune the model

The CLEVR-Humans dataset does not provide ground-truth programs, but we can use REINFORCE to jointly train our entire model on this dataset regardless. When finetuning on CLEVR-Humans, we only update the program generator to prevent overfitting.

You can use the train_model.py script for finetuning like this:

python scripts/train_model.py \
  --model_type PG+EE \
  --train_question_h5 data/train_human_questions.h5 \
  --train_features_h5 data/train_features.h5 \
  --val_question_h5 data/val_human_questions.h5 \
  --val_features_h5 data/val_features.h5 \
  --vocab_json data/human_vocab.json \
  --program_generator_start_from data/joint_pg_ee.pt \
  --execution_engine_start_from data/joint_pg_ee.pt \
  --train_program_generator 1 \
  --train_execution_engine 0 \
  --learning_rate 1e-4 \
  --num_iterations 100000 \
  --checkpoint_every 500 \
  --checkpoint_path data/human_program_generator.pt

Step 2: Test the model

You can use the run_model.py script to run the model on the entire CLEVR-Humans validation or test set. In the previous step we only updated the program generator; when testing the model we use the execution engine that was trained on CLEVR.

python scripts/run_model.py \
  --program_generator data/human_program_generator.pt \
  --execution_engine data/joint_pg_ee.pt \
  --input_question_h5 data/val_human_questions.h5 \
  --input_features_h5 data/val_features.h5

Finetuning baselines on CLEVR-Humans

Step 1: Finetune the model

You can use the train_model.py script to finetune the LSTM, CNN+LSTM, and CNN+LSTM+SA models on the CLEVR-Humans dataset. When finetuning baselines on CLEVR-Humans we only update the RNN to prevent overfitting. For example you can finetune the CNN+LSTM+SA+MLP model we trained earlier like this:

python scripts/train.py \
  --model_type CNN+LSTM+SA \
  --train_question_h5 data/train_human_questions.h5 \
  --train_features_h5 data/train_features.h5 \
  --val_question_h5 data/val_human_questions.h5 \
  --val_features_h5 data-ssd/val_features.h5 \
  --vocab_json data/human_vocab.json \
  --baseline_start_from data/cnn_lstm_sa_mlp.pt \
  --baseline_train_only_rnn 1 \
  --learning_rate 1e-4 \
  --num_iterations 100000 \
  --checkpoint_every 500 \
  --checkpoint_path data/cnn_lstm_sa_mlp_human.pt

Step 2: Test the model

You can use the run_model.py script to test the finetuned baseline models on the entire val or test sets of the CLEVR-Humans dataset. For example you can run the finetuned CNN+LSTM+SA+MLP model on the entire validation set like this:

python scripts/run_model.py \
  --baseline_model data/cnn_lstm_sa_mlp_human.pt \
  --input_question_h5 data/val_human_questions.h5 \
  --input_features_h5 data/val_features.h5