-
Notifications
You must be signed in to change notification settings - Fork 5
/
generate.py
288 lines (245 loc) · 11.2 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import sys
import time
from pathlib import Path
from typing import Optional, Tuple
import itertools
import torch
import torch._dynamo
torch._dynamo.config.suppress_errors = True
import torch._inductor.config
import torch._dynamo.config
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.triton.unique_kernel_names = True
# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))
from model import Transformer
from sentencepiece import SentencePieceProcessor
from qwen_tokenizer import QwenTokenizer
def multinomial_sample_one_no_sync(probs_sort): # Does multinomial sampling without a cuda synchronization
q = torch.empty_like(probs_sort).exponential_(1)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def logits_to_probs(logits, temperature: float = 1.0, top_k: Optional[int] = None):
logits = logits / max(temperature, 1e-5)
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v.select(-1, -1).unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def sample(logits, temperature: float = 1.0, top_k: Optional[int] = None):
probs = logits_to_probs(logits[0, -1], temperature, top_k)
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs
def prefill(model: Transformer, x: torch.Tensor, input_pos: torch.Tensor, **sampling_kwargs) -> torch.Tensor:
# input_pos: [B, S]
logits = model(x, input_pos)
return sample(logits, **sampling_kwargs)[0]
def decode_one_token(model: Transformer, x: torch.Tensor, input_pos: torch.Tensor, **sampling_kwargs) -> Tuple[torch.Tensor, torch.Tensor]:
# input_pos: [B, 1]
assert input_pos.shape[-1] == 1
logits = model(x, input_pos)
return sample(logits, **sampling_kwargs)
def decode_n_tokens(model: Transformer, cur_token: torch.Tensor, input_pos: torch.Tensor, num_new_tokens: int, callback=lambda _: _, **sampling_kwargs):
new_tokens, new_probs = [], []
for i in range(num_new_tokens):
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True): # Actually better for Inductor to codegen attention here
next_token, next_prob = decode_one_token(
model, cur_token, input_pos, **sampling_kwargs
)
input_pos += 1
new_tokens.append(next_token.clone())
callback(new_tokens[-1])
new_probs.append(next_prob.clone())
cur_token = next_token.view(1, -1)
return new_tokens, new_probs
def model_forward(model, x, input_pos):
return model(x, input_pos)
@torch.no_grad()
def generate(
model: Transformer,
prompt: torch.Tensor,
max_new_tokens: int,
*,
interactive: bool,
callback = lambda x: x,
**sampling_kwargs
) -> torch.Tensor:
"""
Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
"""
# create an empty tensor of the expected final shape and fill in the current tokens
T = prompt.size(0)
T_new = T + max_new_tokens
if interactive:
max_seq_length = 350
else:
max_seq_length = min(T_new, model.config.block_size)
device, dtype = prompt.device, prompt.dtype
with torch.device(device):
model.setup_caches(max_batch_size=1, max_seq_length=max_seq_length)
# create an empty tensor of the expected final shape and fill in the current tokens
empty = torch.empty(T_new, dtype=dtype, device=device)
empty[:T] = prompt
seq = empty
input_pos = torch.arange(0, T, device=device)
next_token = prefill(model, prompt.view(1, -1), input_pos, **sampling_kwargs)
seq[T] = next_token
callback(next_token)
input_pos = torch.tensor([T], device=device, dtype=torch.int)
generated_tokens, _ = decode_n_tokens(model, next_token.view(1, -1), input_pos, max_new_tokens - 1, callback=callback, **sampling_kwargs)
seq[T + 1:] = torch.cat(generated_tokens)
return seq
def encode_tokens(tokenizer, string, bos=True, device='cuda'):
tokens = tokenizer.encode(string)
if bos:
tokens = [tokenizer.bos_id()] + tokens
return torch.tensor(tokens, dtype=torch.int, device=device)
def _load_model(checkpoint_path, device, precision):
with torch.device('meta'):
model = Transformer.from_name(checkpoint_path.parent.name)
if "int2" in str(checkpoint_path):
print("Using quip quantization!")
from quantize import WeightOnlyQuipQuantHandler
use_rand = ("rand" in str(checkpoint_path))
simple_quantizer = WeightOnlyQuipQuantHandler(model, use_rand)
model = simple_quantizer.convert_for_runtime()
checkpoint = torch.load(str(checkpoint_path), mmap=True, weights_only=True)
model.load_state_dict(checkpoint, strict=True, assign=True)
model = model.to(device=device, dtype=precision)
return model.eval()
B_INST, E_INST = "[INST]", "[/INST]"
def main(
prompt: str = "Hello, my name is",
interactive: bool = False,
num_samples: int = 5,
max_new_tokens: int = 100,
top_k: int = 200,
temperature: float = 0.8,
checkpoint_path: Path = Path("checkpoints/meta-Transformer/Transformer-2-7b-chat-hf/model.pth"),
compile: bool = True,
compile_prefill: bool = False,
profile: Optional[Path] = None,
) -> None:
"""Generates text samples based on a pre-trained Transformer model and tokenizer.
"""
assert checkpoint_path.is_file(), checkpoint_path
device = 'cuda'
precision = torch.float16
is_chat = "chat" in str(checkpoint_path).lower()
is_qwen = "qwen" in str(checkpoint_path).lower()
print("Loading model ...")
t0 = time.time()
model = _load_model(checkpoint_path, device, precision)
torch.cuda.synchronize()
print(f"Time to load model: {time.time() - t0:.02f} seconds")
tokenizer_path = checkpoint_path.parent / "tokenizer.model"
# llama
if not is_qwen:
tokenizer_path = checkpoint_path.parent / "tokenizer.model"
tokenizer = SentencePieceProcessor(model_file=str(tokenizer_path))
bos = True
# qwen
else:
tokenizer_path = checkpoint_path.parent / "qwen.tiktoken"
tokenizer = QwenTokenizer(str(tokenizer_path))
bos = False
encoded = encode_tokens(tokenizer, prompt, bos=bos, device=device)
prompt_length = encoded.size(0)
torch.manual_seed(1234)
model_size = sum([p.numel() * p.dtype.itemsize for p in itertools.chain(model.parameters(), model.buffers())])
if compile:
global decode_one_token, prefill
decode_one_token = torch.compile(decode_one_token, mode="reduce-overhead", fullgraph=False)
# Uncomment to squeeze more perf out of prefill
if args.compile_prefill:
prefill = torch.compile(prefill, fullgraph=False, dynamic=True)
aggregate_metrics = {
'tokens_per_sec': [],
}
start = -1 if compile else 0
for i in range(start, num_samples):
torch.cuda.synchronize()
if i >= 0 and interactive:
prompt = input("What is your prompt? ")
if is_chat:
if is_qwen:
prompt = f"<|im_start|>user\n{prompt.strip()}<|im_end|>\n<|im_start|>assistant\n"
else:
prompt = f"{B_INST} {prompt.strip()} {E_INST}"
encoded = encode_tokens(tokenizer, prompt, bos=(not is_qwen), device=device)
if interactive and i >= 0:
buffer = []
period_id = tokenizer.encode('.')[0]
done_generating = False
def callback(x):
nonlocal done_generating
if done_generating:
return
buffer.append(tokenizer.decode([period_id] + x.tolist())[1:])
if x.item() == tokenizer.eos_id():
done_generating = True
if len(buffer) == 4 or done_generating:
print(''.join(buffer), end='', flush=True)
buffer.clear()
# print(, end='', flush=True)
else:
callback = lambda x : x
t0 = time.perf_counter()
import contextlib
if i != num_samples - 1 or not profile:
prof = contextlib.nullcontext()
else:
torch.profiler._utils._init_for_cuda_graphs()
prof = torch.profiler.profile()
with prof:
y = generate(
model,
encoded,
max_new_tokens,
interactive=interactive,
callback=callback,
temperature=temperature,
top_k=top_k,
)
if i == -1:
print(f"Compilation time: {time.perf_counter() - t0:.2f} seconds")
continue
if hasattr(prof, "export_chrome_trace"):
prof.export_chrome_trace(f"{profile}.json")
torch.cuda.synchronize()
t = time.perf_counter() - t0
if not interactive:
print(tokenizer.decode(y.tolist()))
else:
print()
tokens_generated = y.size(0) - prompt_length
tokens_sec = tokens_generated / t
aggregate_metrics['tokens_per_sec'].append(tokens_sec)
print(f"Time for inference {i + 1}: {t:.02f} sec total, {tokens_sec:.02f} tokens/sec")
print(f"Bandwidth achieved: {model_size * tokens_sec / 1e9:.02f} GB/s")
print("==========")
print(f"Average tokens/sec: {torch.mean(torch.tensor(aggregate_metrics['tokens_per_sec'])).item():.2f}")
print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB")
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Your CLI description.')
parser.add_argument('--prompt', type=str, default="Hello, my name is", help='Input prompt.')
parser.add_argument('--interactive', action='store_true', help='Whether to launch in interactive mode')
parser.add_argument('--num_samples', type=int, default=5, help='Number of samples.')
parser.add_argument('--max_new_tokens', type=int, default=128, help='Maximum number of new tokens.')
parser.add_argument('--top_k', type=int, default=200, help='Top-k for sampling.')
parser.add_argument('--temperature', type=float, default=1, help='Temperature for sampling.')
parser.add_argument('--checkpoint_path', type=Path, default=Path("checkpoints/meta-Transformer/Transformer-2-7b-chat-hf/model.pth"), help='Model checkpoint path.')
parser.add_argument('--compile', action='store_true', help='Whether to compile the model.')
parser.add_argument('--compile_prefill', action='store_true', help='Whether to compile the prefill (improves prefill perf, but higher compile times)')
parser.add_argument('--profile', type=Path, default=None, help='Profile path.')
args = parser.parse_args()
main(
args.prompt, args.interactive, args.num_samples, args.max_new_tokens, args.top_k,
args.temperature, args.checkpoint_path, args.compile, args.compile_prefill, args.profile,
)