forked from google-deepmind/kinetics-i3d
-
Notifications
You must be signed in to change notification settings - Fork 5
/
evaluate_sample.py
137 lines (114 loc) · 4.78 KB
/
evaluate_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Loads a sample video and classifies using a trained Kinetics checkpoint."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
import i3d
_IMAGE_SIZE = 224
_NUM_CLASSES = 400
_SAMPLE_VIDEO_FRAMES = 79
_SAMPLE_PATHS = {
'rgb': 'data/v_CricketShot_g04_c01_rgb.npy',
'flow': 'data/v_CricketShot_g04_c01_flow.npy',
}
_CHECKPOINT_PATHS = {
'rgb': 'data/checkpoints/rgb_scratch/model.ckpt',
'flow': 'data/checkpoints/flow_scratch/model.ckpt',
'rgb_imagenet': 'data/checkpoints/rgb_imagenet/model.ckpt',
'flow_imagenet': 'data/checkpoints/flow_imagenet/model.ckpt',
}
_LABEL_MAP_PATH = 'data/label_map.txt'
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_string('eval_type', 'joint', 'rgb, flow, or joint')
tf.flags.DEFINE_boolean('imagenet_pretrained', True, '')
def main(unused_argv):
tf.logging.set_verbosity(tf.logging.INFO)
eval_type = FLAGS.eval_type
imagenet_pretrained = FLAGS.imagenet_pretrained
if eval_type not in ['rgb', 'flow', 'joint']:
raise ValueError('Bad `eval_type`, must be one of rgb, flow, joint')
kinetics_classes = [x.strip() for x in open(_LABEL_MAP_PATH)]
if eval_type in ['rgb', 'joint']:
# RGB input has 3 channels.
rgb_input = tf.placeholder(
tf.float32,
shape=(1, _SAMPLE_VIDEO_FRAMES, _IMAGE_SIZE, _IMAGE_SIZE, 3))
with tf.variable_scope('RGB'):
rgb_model = i3d.InceptionI3d(
_NUM_CLASSES, spatial_squeeze=True, final_endpoint='Logits')
rgb_logits, _ = rgb_model(
rgb_input, is_training=False, dropout_keep_prob=1.0)
rgb_variable_map = {}
for variable in tf.global_variables():
if variable.name.split('/')[0] == 'RGB':
rgb_variable_map[variable.name.replace(':0', '')] = variable
rgb_saver = tf.train.Saver(var_list=rgb_variable_map, reshape=True)
if eval_type in ['flow', 'joint']:
# Flow input has only 2 channels.
flow_input = tf.placeholder(
tf.float32,
shape=(1, _SAMPLE_VIDEO_FRAMES, _IMAGE_SIZE, _IMAGE_SIZE, 2))
with tf.variable_scope('Flow'):
flow_model = i3d.InceptionI3d(
_NUM_CLASSES, spatial_squeeze=True, final_endpoint='Logits')
flow_logits, _ = flow_model(
flow_input, is_training=False, dropout_keep_prob=1.0)
flow_variable_map = {}
for variable in tf.global_variables():
if variable.name.split('/')[0] == 'Flow':
flow_variable_map[variable.name.replace(':0', '')] = variable
flow_saver = tf.train.Saver(var_list=flow_variable_map, reshape=True)
if eval_type == 'rgb':
model_logits = rgb_logits
elif eval_type == 'flow':
model_logits = flow_logits
else:
model_logits = rgb_logits + flow_logits
model_predictions = tf.nn.softmax(model_logits)
with tf.Session() as sess:
feed_dict = {}
if eval_type in ['rgb', 'joint']:
if imagenet_pretrained:
rgb_saver.restore(sess, _CHECKPOINT_PATHS['rgb_imagenet'])
else:
rgb_saver.restore(sess, _CHECKPOINT_PATHS['rgb'])
tf.logging.info('RGB checkpoint restored')
rgb_sample = np.load(_SAMPLE_PATHS['rgb'])
tf.logging.info('RGB data loaded, shape=%s', str(rgb_sample.shape))
feed_dict[rgb_input] = rgb_sample
if eval_type in ['flow', 'joint']:
if imagenet_pretrained:
flow_saver.restore(sess, _CHECKPOINT_PATHS['flow_imagenet'])
else:
flow_saver.restore(sess, _CHECKPOINT_PATHS['flow'])
tf.logging.info('Flow checkpoint restored')
flow_sample = np.load(_SAMPLE_PATHS['flow'])
tf.logging.info('Flow data loaded, shape=%s', str(flow_sample.shape))
feed_dict[flow_input] = flow_sample
out_logits, out_predictions = sess.run(
[model_logits, model_predictions],
feed_dict=feed_dict)
out_logits = out_logits[0]
out_predictions = out_predictions[0]
sorted_indices = np.argsort(out_predictions)[::-1]
print('Norm of logits: %f' % np.linalg.norm(out_logits))
print('\nTop classes and probabilities')
for index in sorted_indices[:20]:
print(out_predictions[index], out_logits[index], kinetics_classes[index])
if __name__ == '__main__':
tf.app.run(main)