-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgen_script_long_llama.py
302 lines (268 loc) · 8.82 KB
/
gen_script_long_llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import json
def load_json(path):
with open(path, 'r', encoding='utf-8') as f:
data = json.load(f)
return data
def write_json(path, data):
with open(path, 'w', encoding='utf-8') as f:
json.dump(data, f, ensure_ascii=False,indent=2)
def load_jsonline(path):
with open(path, 'r', encoding='utf-8') as f:
result=[]
for line_s in f:
line=json.loads(line_s)
result.append(line)
return result
def write_jsonline(path, data):
with open(path, 'w', encoding='utf-8') as f:
for line in data:
line_s=json.dumps(line, ensure_ascii=False)
f.write(line_s)
f.write('\n')
order_idx = 3
if order_idx == 4:
all_tasks=[
"yelp",
"amazon",
"mnli",
"cb",
"copa",
"qqp",
"rte",
"imdb",
"sst2",
"dbpedia",
"agnews",
"yahoo",
"multirc",
"boolq",
"wic"
] # Order 4
else:
all_tasks = ["mnli",
"cb",
"wic",
"copa",
"qqp",
"boolq",
"rte",
"imdb",
"yelp",
"amazon",
"sst2",
"dbpedia",
"agnews",
"multirc",
"yahoo"] # Order 3
dataset_list = all_tasks
task_order = ','.join(all_tasks)
config_template={
"Long_Sequence": [
],
}
import os
import pathlib
import numpy as np
from copy import deepcopy
lora_r = 4
lora_alpha = 32
lora_dropout = 0.
kl_ratio = 2
attn_temperature = 1
learning_rate = 5e-5
num_train_epochs = 20
attn_lr = 0.
replay_after_n_epoch = 0
run_name = f"your_job_name"
history_config=[]
for one_data_name in dataset_list:
pathlib.Path(f'./configs/{run_name}_configs/{one_data_name}').mkdir(parents=True, exist_ok=True)
config={
"sampling strategy": "full",
"dataset name": f"{one_data_name}"
}
history_config.append(config)
dev_config=deepcopy(config_template)
dev_config['Long_Sequence'].append(config)
write_json(f'./configs/{run_name}_configs/{one_data_name}/dev_tasks.json', dev_config)
train_config=deepcopy(config_template)
train_config['Long_Sequence'].append(config)
write_json(f'./configs/{run_name}_configs/{one_data_name}/train_tasks.json', train_config)
test_config=deepcopy(config_template)
test_config['Long_Sequence'].extend(history_config)
write_json(f'./configs/{run_name}_configs/{one_data_name}/test_tasks.json', test_config)
sh_str=rf'''#!/bin/bash
#SBATCH -J cl
#SBATCH -o cl-%j.out
#SBATCH -p compute
#SBATCH -N 1
#SBATCH -t 20:00:00
#SBATCH --mem 128G
#SBATCH --gres=gpu:a100-sxm4-80gb:1
export CUDA_DEVICE_ORDER="PCI_BUS_ID"
port=$(shuf -i25000-30000 -n1)
deepspeed --num_gpus=4 src/run.py \
--do_train \
--do_predict \
--predict_with_generate \
--model_name_or_path your_llama_model_path \
--data_dir CL_Benchmark \
--task_order {task_order} \
--task_config_dir configs/{run_name}_configs/{dataset_list[0]} \
--output_dir logs_and_outputs/{run_name}/outputs/1-{dataset_list[0]} \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 32 \
--gradient_accumulation_steps 4 \
--learning_rate {learning_rate} \
--attn_lr {attn_lr} \
--num_train_epochs {num_train_epochs} \
--bf16 \
--deepspeed configs/ds_configs/stage2.config \
--run_name {run_name} \
--max_source_length 1024 \
--max_target_length 50 \
--generation_max_length 50 \
--add_task_name False \
--add_dataset_name False \
--overwrite_output_dir \
--overwrite_cache \
--lr_scheduler_type constant \
--warmup_steps 0 \
--logging_strategy steps \
--logging_steps 10 \
--metric_for_best_model eval_exact_match \
--evaluation_strategy steps \
--save_strategy steps \
--save_total_limit 1 \
--lora_r {lora_r} \
--lora_alpha {lora_alpha} \
--lora_dropout {lora_dropout} \
--load_best_model_at_end \
--data_replay_freq -1 \
--replay_after_n_epoch 0 \
--kl_ratio {kl_ratio} \
--attn_temperature {attn_temperature} \
rm -rf logs_and_outputs/{run_name}/outputs/1-{dataset_list[0]}/checkpoint*
sleep 5
'''
previous_lora_path_list = []
for idx in range(len(dataset_list)-1):
previous_lora_path_list.append(f"logs_and_outputs/{run_name}/outputs/{idx+1}-{dataset_list[idx]}/saved_weights")
previous_lora_path = ','.join(previous_lora_path_list)
if dataset_list[idx+1] in ["cb", "copa", "boolq", "imdb", "dbpedia", "multirc"]:
if dataset_list[idx+1] == "cb":
max_steps = 100
elif dataset_list[idx+1] == "copa":
max_steps = 200
elif dataset_list[idx+1] == "boolq":
max_steps = 500
elif dataset_list[idx+1] == "imdb":
max_steps = 250
elif dataset_list[idx+1] == "dbpedia":
max_steps = 200
else:
max_steps = 500
sh_str+=rf'''
deepspeed --num_gpus=4 src/run.py \
--do_train \
--do_predict \
--predict_with_generate \
--model_name_or_path /your_llama_model_path \
--load_checkpoint_from logs_and_outputs/{run_name}/outputs/{idx+1}-{dataset_list[idx]}/saved_weights/trans_input.pt \
--previous_lora_path {previous_lora_path} \
--previous_prompt_key_path logs_and_outputs/{run_name}/outputs/{idx+1}-{dataset_list[idx]}/saved_weights/prompts_keys_till_now.pt \
--data_dir CL_Benchmark \
--task_order {task_order} \
--gen_data_dir generated_data/lora_gen_15datasets_t5_xl \
--task_config_dir configs/{run_name}_configs/{dataset_list[idx+1]} \
--output_dir logs_and_outputs/{run_name}/outputs/{idx+2}-{dataset_list[idx+1]} \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 32 \
--gradient_accumulation_steps 4 \
--learning_rate {learning_rate} \
--attn_lr {attn_lr} \
--max_steps {max_steps} \
--bf16 \
--deepspeed configs/ds_configs/stage2.config \
--run_name {run_name} \
--max_source_length 1024 \
--max_target_length 50 \
--generation_max_length 50 \
--add_task_name False \
--add_dataset_name False \
--overwrite_output_dir \
--overwrite_cache \
--lr_scheduler_type constant \
--warmup_steps 0 \
--logging_strategy steps \
--logging_steps 10 \
--metric_for_best_model eval_exact_match_for_{dataset_list[idx+1]} \
--evaluation_strategy steps \
--save_strategy steps \
--save_total_limit 1 \
--load_best_model_at_end \
--lora_r {lora_r} \
--lora_alpha {lora_alpha} \
--lora_dropout {lora_dropout} \
--data_replay_freq -1 \
--replay_after_n_epoch {replay_after_n_epoch} \
--kl_ratio {kl_ratio} \
--attn_temperature {attn_temperature} \
rm -rf logs_and_outputs/{run_name}/outputs/{idx+2}-{dataset_list[idx+1]}/checkpoint*
sleep 5
'''
else:
sh_str+=rf'''
deepspeed --num_gpus=4 src/run_llama.py \
--do_train \
--do_predict \
--predict_with_generate \
--model_name_or_path your_llama_model_path \
--load_checkpoint_from logs_and_outputs/{run_name}/outputs/{idx+1}-{dataset_list[idx]}/saved_weights/trans_input.pt \
--previous_lora_path {previous_lora_path} \
--previous_prompt_key_path logs_and_outputs/{run_name}/outputs/{idx+1}-{dataset_list[idx]}/saved_weights/prompts_keys_till_now.pt \
--data_dir CL_Benchmark \
--task_order {task_order} \
--gen_data_dir generated_data/lora_gen_long_llama \
--task_config_dir configs/{run_name}_configs/{dataset_list[idx+1]} \
--output_dir logs_and_outputs/{run_name}/outputs/{idx+2}-{dataset_list[idx+1]} \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 32 \
--gradient_accumulation_steps 4 \
--learning_rate {learning_rate} \
--attn_lr {attn_lr} \
--num_train_epochs {num_train_epochs} \
--bf16 \
--deepspeed configs/ds_configs/stage2.config \
--run_name {run_name} \
--max_source_length 1024 \
--max_target_length 50 \
--generation_max_length 50 \
--add_task_name False \
--add_dataset_name False \
--overwrite_output_dir \
--overwrite_cache \
--lr_scheduler_type constant \
--warmup_steps 0 \
--logging_strategy steps \
--logging_steps 10 \
--metric_for_best_model eval_exact_match_for_{dataset_list[idx+1]} \
--evaluation_strategy steps \
--save_strategy steps \
--save_total_limit 1 \
--load_best_model_at_end \
--lora_r {lora_r} \
--lora_alpha {lora_alpha} \
--lora_dropout {lora_dropout} \
--data_replay_freq 1 \
--replay_after_n_epoch {replay_after_n_epoch} \
--kl_ratio {kl_ratio} \
--attn_temperature {attn_temperature} \
rm -rf logs_and_outputs/{run_name}/outputs/{idx+2}-{dataset_list[idx+1]}/checkpoint*
sleep 5
'''
sh_str+=rf'''
python score.py {run_name} single_train_results_path
'''
with open(f'{run_name}.sh', 'w') as f:
f.write(sh_str)