-
Notifications
You must be signed in to change notification settings - Fork 7
/
clustervol_struct.m
132 lines (121 loc) · 4.79 KB
/
clustervol_struct.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
function cl = clustervol_struct(img, threshold, k)
% clustervol_struct - create cluster struct (cell array) for TW tools
%
% FORMAT: cl = clustervol_struct(img, thresholds, ks)
%
% Input fields:
%
% img filename of image (e.g. t-map) to cluster
% thresholds list of thresholds (1xT double array)
% values in the range of [-0.5 .. 0] are swapped in sign
% and interpreted as a probability threshold
% ks list of extent thresholds (1xT double array)
%
% Output fields:
%
% cl 1xT cell array holding 1xC structs each with fields
% .title customary text
% .threshold numeric threshold value
% .M matrix to compute real-world coordinates from voxels
% .dim image dimensions used to compute indices from voxels
% .voxSize used to compute volume of cluster
% .name customary text
% .Z extracted stats
% .XYZmm real-world coordinates of voxel coordinates
% .XYZ voxel coordinates
% .numVox number of voxels
% .mm_center center of cluster (in mm, rounded)
%
% Note: These structures are used for the tools by Tor Wager! This
% function uses spm_vol and spm_read_vols (for compatibility!)
% Version: v0.9b
% Build: 11050712
% Date: Apr-09 2011, 1:55 PM EST
% Author: Jochen Weber, SCAN Unit, Columbia University, NYC, NY, USA
% URL/Info: http://neuroelf.net/
% Copyright (c) 2010, 2011, Jochen Weber
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in the
% documentation and/or other materials provided with the distribution.
% * Neither the name of Columbia University nor the
% names of its contributors may be used to endorse or promote products
% derived from this software without specific prior written permission.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
% ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
% WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
% DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
% DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
% (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
% LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
% ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
% (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
% SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
% argument check
if nargin < 3 || ...
~ischar(img) || ...
~isa(threshold, 'double') || ...
isempty(threshold) || ...
~isa(k, 'double') || ...
numel(threshold) ~= numel(k) || ...
any(k(:) < 0)
error( ...
'neuroelf:BadArgument', ...
'Invalid or missing argument in call.' ...
);
end
% try reading the image
try
spm_defaults;
v = spm_vol(img);
y = spm_read_vols(v);
catch ne_eo;
error( ...
'neuroelf:SPMError', ...
'Error using SPM function: ''%s''.', ...
ne_eo.message ...
);
end
% create output argument as cell array
clt = {cell2struct(cell(1,1,11), ...
{'title', 'threshold', 'M', 'dim', 'voxSize', 'name', ...
'Z', 'XYZmm', 'XYZ', 'numVox', 'mm_center'}, 3)};
cl = clt(ones(1, numel(threshold)));
if any(threshold < 0 & threshold > -0.5)
yt = -y;
yt(y == 0) = -1;
end
% iterate over thresholds
for tc = 1:numel(threshold)
% cluster volume
if threshold(tc) < 0 && ...
threshold(tc) > -0.5
[clt, cs] = clustervol(yt, -threshold(tc), k(tc), struct('mat', v.mat));
else
[clt, cs] = clustervol(y, threshold(tc), k(tc), struct('mat', v.mat));
end
% set initial fields of struct
cl{tc}.threshold = threshold(tc);
cl{tc}.M = v.mat;
cl{tc}.dim = v.dim;
cl{tc}.voxSize = diag(v.mat(1:3, 1:3))';
cl{tc} = cl{tc}(ones(1, numel(cs)));
% iterate over found clusters
for cc = 1:numel(cs)
% set further fields
nv = numel(cs(cc).values);
cl{tc}(cc).title = sprintf('Cluster of %d voxels from %s', nv, img);
cl{tc}(cc).name = '';
cl{tc}(cc).Z = cs(cc).values';
cl{tc}(cc).XYZmm = cs(cc).rwcoords';
cl{tc}(cc).XYZ = cs(cc).coords';
cl{tc}(cc).numVox = nv;
cl{tc}(cc).mm_center = round(mean(cs(cc).rwcoords));
end
end