-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_moco.py
executable file
·828 lines (698 loc) · 33.1 KB
/
main_moco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import argparse
import builtins
import pathlib
import math
import string
import os
import random
import shutil
import time
import warnings
import torch
import torchvision
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from imagenet import ImageNet, SubsetSampler # Kakao brain stuff.
from sklearn.model_selection import StratifiedShuffleSplit
from torch.utils.data import SubsetRandomSampler, Sampler, Subset, ConcatDataset
from RandAugment import RandAugment
import slm_utils.get_faa_transforms
import moco.loader
import moco.builder
import numpy as np
# SLM: add this in
# import data_loader
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
# ONLINE LOGGING
import wandb
parser = argparse.ArgumentParser(description='PyTorch SSL Training')
#########
# WANDB #
#########
parser.add_argument('--notes', type=str, default='', help='wandb notes')
default_id = ''.join([random.choice(string.ascii_letters + string.digits) for n in range(32)])
parser.add_argument('--name', type=str, default=default_id, help='wandb id/name')
parser.add_argument('--id', type=str, default=default_id, help='wandb id/name')
parser.add_argument('--wandbproj', type=str, default='autoself', help='wandb project name')
parser.add_argument('--dataid', help='id of dataset', default="cifar10", choices=('cifar10', 'imagenet', 'svhn', 'logos'))
parser.add_argument('--checkpoint-interval', default=100, type=int,
help='how often to checkpoint')
parser.add_argument('--nosave_latest', action='store_true', help='include flag to not save the latest epoch during trainig (risky with big datasets since youll only have the checkpoints)')
parser.add_argument('--image-log-interval', default=10, type=int,
help='how often to log example images')
parser.add_argument('--upload_checkpoints', action='store_true', help='Upload checkpoints to wandb')
################
# ORIGNAL ARGS #
################
parser.add_argument('--data', metavar='DIR',
help='path to dataset')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet50)')
parser.add_argument('-j', '--workers', default=32, type=int, metavar='N',
help='number of data loading workers (default: 32)')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--checkpoint_fp', default='/userdata/smetzger/all_deepul_files/ckpts', type=str,
help='where to store checkpointed models')
parser.add_argument('--lr', '--learning-rate', default=0.03, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--schedule', default=[120, 160], nargs='*', type=int,
help='learning rate schedule (when to drop lr by 10x)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum of SGD solver')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
# moco specific configs:
parser.add_argument('--moco-dim', default=128, type=int,
help='feature dimension (default: 128)')
parser.add_argument('--moco-k', default=65536, type=int,
help='queue size; number of negative keys (default: 65536)')
parser.add_argument('--moco-m', default=0.999, type=float,
help='moco momentum of updating key encoder (default: 0.999)')
parser.add_argument('--moco-t', default=0.07, type=float,
help='softmax temperature (default: 0.07)')
parser.add_argument('--kfold', default=None, type=int,
help="which fold to use")
# options for moco v2
parser.add_argument('--mlp', action='store_true',
help='use mlp head')
parser.add_argument('--aug-plus', action='store_true',
help='use moco v2 data augmentation')
parser.add_argument('--cos', action='store_true',
help='use cosine lr schedule')
# Fast AutoAugment Args.
parser.add_argument('--faa_aug', action='store_true',
help='use FastAutoAugment CIFAR10 augmentations')
parser.add_argument('--randomcrop', action='store_true',
help='use the random crop instead of randomresized crop, for FAA augmentations')
parser.add_argument('--gauss', action='store_true',
help='blur with FAA augs')
parser.add_argument('--rotnet', action='store_true', help='set true to add a rot net head')
parser.add_argument('--nomoco', action='store_true', help='set true to **not** have the moco head (moco head by default)')
# RandAug
parser.add_argument('--rand_aug', action='store_true', help='use RandAugment (set m and n appropriately)')
parser.add_argument('--rand_aug_m', default=9, type=int, help='RandAugment M (magnitude of augments)')
parser.add_argument('--rand_aug_n', default=2, type=int, help='RandAugment N (number of augs)')
parser.add_argument('--rand_aug_orig', action='store_true', help='use RandAugment orginal transforms')
parser.add_argument('--rand_aug_linear_m', action='store_true', help='use RandAugment and scale m linearly')
parser.add_argument('--rand_aug_m_min', default=4, type=int, help='RandAugment M when linearly scaling')
parser.add_argument('--rand_aug_m_max', default=11, type=int, help='RandAugment M when linearly scaling')
parser.add_argument('--rand_aug_top_k', default=0, type=int, help='RandAugment only use the top k augments')
parser.add_argument('--rand_resize_only', action='store_true', help='Use only random resized crop')
parser.add_argument('--custom_aug_name', default=None, type=str,
help='name of custom augmentation')
parser.add_argument('--single_aug_idx', default=None, type=int, help='Which of the single augmentations to use')
parser.add_argument('--reduced_imgnet', action='store_true', help='Use a random set of 50k imagenet examples')
parser.add_argument('--sigma', type=float, default=2.0, help ='sigma for gblur')
parser.add_argument('--rrc_param', type=float, default=.2, help='rrc lower bound')
ngpus_per_node = torch.cuda.device_count()
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
# set the checkpoint id
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
CHECKPOINT_ID = "{}_{}epochs_{}bsz_{:0.4f}lr" \
.format(args.id[:5], args.epochs, args.batch_size, args.lr)
if args.mlp:
CHECKPOINT_ID += "_mlp"
if args.aug_plus:
CHECKPOINT_ID += "_augplus"
if args.cos:
CHECKPOINT_ID += "_cos"
if args.faa_aug:
CHECKPOINT_ID += "_faa"
if args.randomcrop:
CHECKPOINT_ID += "_randcrop"
if args.rotnet:
CHECKPOINT_ID += "_rotnet"
if args.rand_aug:
CHECKPOINT_ID += "_randaug"
if not(args.kfold == None):
CHECKPOINT_ID += "_fold_%d" %(args.kfold)
if not(args.custom_aug_name == None):
CHECKPOINT_ID += "_custom_aug_" + args.custom_aug_name
CHECKPOINT_ID += args.dataid
args.gpu = gpu
# suppress printing if not master
if args.multiprocessing_distributed and args.gpu != 0:
def print_pass(*args):
pass
builtins.print = print_pass
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# create model
heads = {}
if not args.nomoco:
heads["moco"] = {
"num_classes": args.moco_dim
}
if args.rotnet:
heads["rotnet"] = {
"num_classes": 4
}
model = moco.builder.MoCo(
models.__dict__[args.arch],
K=args.moco_k, m=args.moco_m, T=args.moco_t, mlp=args.mlp, dataid=args.dataid,
multitask_heads=heads
)
print(model)
# setup file structure for saving
pathlib.Path(args.checkpoint_fp).mkdir(parents=True, exist_ok=True)
if args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
# comment out the following line for debugging
# raise NotImplementedError("Only DistributedDataParallel is supported.")
else:
# AllGather implementation (batch shuffle, queue update, etc.) in
# this code only supports DistributedDataParallel.
raise NotImplementedError("Only DistributedDataParallel is supported.")
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
args.id=checkpoint['id']
args.name=checkpoint['name']
CHECKPOINT_ID = checkpoint['name']
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# Data loading code
# Set up crops and normalization depending on the dataset.
# Cifar 10 crops and normalization.
if args.dataid == "cifar10" or args.dataid =="svhn":
_CIFAR_MEAN, _CIFAR_STD = (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)
normalize = transforms.Normalize(mean=_CIFAR_MEAN, std=_CIFAR_STD)
if not args.randomcrop:
random_resized_crop = transforms.RandomResizedCrop(28, scale=(args.rrc_param, 1.))
else:
# Use the crop they were using in Fast AutoAugment.
random_resized_crop = transforms.RandomCrop(32, padding=4)
# Use the imagenet parameters.
elif args.dataid == "imagenet" or args.dataid == "logos":
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
random_resized_crop = transforms.RandomResizedCrop(224, scale=(0.2, 1.))
if args.aug_plus and (args.faa_aug or
args.rand_aug or args.rand_aug_orig or not(args.custom_aug_name == None)):
raise Exception("Cannot have multiple augs on command line")
if args.aug_plus:
# MoCo v2's aug: similar to SimCLR https://arxiv.org/abs/2002.05709
augmentation = [
random_resized_crop,
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1) # not strengthened
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.RandomApply([moco.loader.GaussianBlur([args.sigma/20, args.sigma])], p=0.5),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
]
elif args.faa_aug:
augmentation, _ = slm_utils.get_faa_transforms.get_faa_transforms_cifar_10(args.randomcrop, args.gauss)
transformations = moco.loader.TwoCropsTransform(augmentation)
elif args.rand_aug_orig:
print("Using random aug original")
augmentation = [
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
RandAugment(args.rand_aug_n, args.rand_aug_m),
transforms.ToTensor(),
normalize
]
elif args.rand_aug:
randaug_n = args.rand_aug_n
if args.rand_aug_linear_m:
print("Using random aug with linear m")
randaug_m = args.rand_aug_m_min
else:
randaug_m = args.rand_aug_m
print("Using random aug")
if args.rand_aug_top_k > 0:
randaug = TopRandAugment(randaug_n, randaug_m, args.rand_aug_top_k)
else:
randaug = RandAugment(randaug_n, randaug_m)
augmentation = [
random_resized_crop,
transforms.RandomHorizontalFlip(),
randaug,
transforms.ToTensor(),
normalize
]
elif args.rand_resize_only and args.custom_aug_name == None:
print("Using random resize only")
augmentation = [
random_resized_crop,
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
]
elif not args.custom_aug_name == None:
augmentation, _ = slm_utils.get_faa_transforms.load_custom_transforms(name=args.custom_aug_name, randomcrop=args.randomcrop,
aug_idx=args.single_aug_idx, dataid=args.dataid)
print('using custom augs', augmentation)
transformations = moco.loader.TwoCropsTransform(augmentation)
else:
# MoCo v1's aug: the same as InstDisc https://arxiv.org/abs/1805.01978
print('using v1 augs')
augmentation = [
random_resized_crop,
transforms.RandomGrayscale(p=0.2),
transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
]
if not args.faa_aug and args.custom_aug_name == None:
print('using augmentation', augmentation)
transformations = moco.loader.TwoCropsTransform(transforms.Compose(augmentation))
print('xforms', transformations)
if args.dataid == "imagenet" and not args.reduced_imgnet:
train_dataset = datasets.ImageFolder(
args.data,
transformations)
elif args.dataid == "logos" and not args.reduced_imgnet:
train_dataset = data_loader.GetLoader(data_root=args.data,
data_list='train_images_root.txt',
transform=transformations)
elif (args.dataid == "imagenet" or args.dataid == 'logos') and args.reduced_imgnet:
# idx120 = [16, 23, 52, 57, 76, 93, 95, 96, 99, 121, 122, 128, 148, 172, 181, 189, 202, 210, 232, 238, 257, 258, 259, 277, 283, 289, 295, 304, 307, 318, 322, 331, 337, 338, 345, 350, 361, 375, 376, 381, 388, 399, 401, 408, 424, 431, 432, 440, 447, 462, 464, 472, 483, 497, 506, 512, 530, 541, 553, 554, 557, 564, 570, 584, 612, 614, 619, 626, 631, 632, 650, 657, 658, 660, 674, 675, 680, 682, 691, 695, 699, 711, 734, 736, 741, 754, 757, 764, 769, 770, 780, 781, 787, 797, 799, 811, 822, 829, 830, 835, 837, 842, 843, 845, 873, 883, 897, 900, 902, 905, 913, 920, 925, 937, 938, 940, 941, 944, 949, 959]
if args.dataid == "imagenet":
total_trainset = ImageNet(root=args.data, transform=transformations) # TODO for LINCLS, make this train and test xforms.
else:
total_trainset = data_loader.GetLoader(data_root=args.data,
data_list='train_images_root.txt',
transform=transformations)
train_idx = np.arange(len(total_trainset))
np.random.seed(1337) #fingers crossed.
np.random.shuffle(train_idx)
train_idx = train_idx[:50000]
kfold = args.kfold
print('KFOLD BEING USED', kfold)
subset = np.arange(kfold*10000, (kfold+1)*10000)
print('start', 'end', kfold*10000, (kfold+1)*10000)
valid_idx = train_idx[subset]
train_idx = np.delete(train_idx, subset)
print('first val_idx', valid_idx[:10])
train_dataset = total_trainset
train_dataset = Subset(train_dataset, train_idx)
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetSampler(valid_idx)
print(len(train_dataset))
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
print(len(train_dataset))
print('first 10 train', train_idx[:10])
print('first 10 valid', valid_idx[:10])
print('len train', len(train_idx))
print('len valid', len(valid_idx))
for i in valid_idx:
if i in train_idx:
raise Exception("Valid idx in train idx: this is unexpected")
print('train_sampler', train_sampler)
elif args.dataid == "cifar10":
train_dataset = torchvision.datasets.CIFAR10(args.data,
transform=transformations,
download=True)
elif args.dataid == "svhn":
train_dataset = torchvision.datasets.SVHN(args.data,
transform=transformations,
download=True)
else:
raise NotImplementedError("Support for the following dataset is not yet implemented: {}".format(args.dataid))
if not args.kfold == None and not args.reduced_imgnet:
torch.manual_seed(1337)
print('before: K FOLD', args.kfold, len(train_dataset))
lengths = [len(train_dataset)//5]*5
print(lengths)
lengths[-1] = int(lengths[-1] + (len(train_dataset)-np.sum(lengths)))
print(lengths)
folds = torch.utils.data.random_split(train_dataset, lengths )
print(len(folds))
folds.pop(args.kfold)
print(len(folds))
train_dataset = torch.utils.data.ConcatDataset(folds)
print(len(train_dataset))
else:
print("NO KFOLD ARG", args.kfold, ' or ', args.reduced_imgnet)
if args.distributed and not args.reduced_imgnet:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
elif not args.reduced_imgnet:
train_sampler = None
print('train sampler', train_sampler)
torch.manual_seed(1337)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=True)
print(len(train_loader))
# CR: only the master will report to wandb for now
if not args.multiprocessing_distributed or args.rank % ngpus_per_node == 0:
wandb.init(project=args.wandbproj,
name=CHECKPOINT_ID, id=args.id, resume=args.resume,
config=args.__dict__, notes=args.notes)
print(model)
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
adjust_learning_rate(optimizer, epoch, args)
if args.rand_aug_linear_m:
mval = args.rand_aug_m_min + math.floor(float(epoch) / float(args.epochs) * (args.rand_aug_m_max - args.rand_aug_m_min + 1))
print("Rand aug m: {}".format(mval))
randaug.m = mval
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, args, CHECKPOINT_ID)
# save current epoch
if not args.nosave_latest and (not args.multiprocessing_distributed or args.rank % ngpus_per_node == 0):
print("saving latest epoch")
cp_filename = "{}_latest.tar".format(CHECKPOINT_ID[:5])
cp_fullpath = os.path.join(args.checkpoint_fp, cp_filename)
torch.save({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
'id': args.id,
'name': CHECKPOINT_ID,
}, cp_fullpath)
print("saved latest epoch")
if (epoch % args.checkpoint_interval == 0 or epoch == args.epochs-1) \
and (not args.multiprocessing_distributed or
(args.multiprocessing_distributed and args.rank % ngpus_per_node == 0)):
cp_filename = "{}_{:04d}.tar".format(CHECKPOINT_ID, epoch)
cp_fullpath = os.path.join(args.checkpoint_fp, cp_filename)
torch.save({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
'id': args.id,
'name': CHECKPOINT_ID,
}, cp_fullpath)
if args.upload_checkpoints:
print("Uploading wandb checkpoint")
wandb.save(cp_fullpath)
if epoch == args.epochs - 1:
print("Saving final results to wandb")
wandb.save(cp_fullpath)
print("Done - wrapping up")
def train(train_loader, model, criterion, optimizer, epoch, args, CHECKPOINT_ID):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
rot_losses = AverageMeter('Rot Loss', ':.4e')
moco_losses = AverageMeter('MOCO Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
args.multiprocessing_distributed and args.rank % ngpus_per_node == 0,
len(train_loader),
[batch_time, data_time, losses, rot_losses, top1, top5],
prefix="{} Epoch: [{}]".format(CHECKPOINT_ID[:5],epoch))
# switch to train mode
model.train()
end = time.time()
for i, (images, _) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
images[0] = images[0].cuda(args.gpu, non_blocking=True)
images[1] = images[1].cuda(args.gpu, non_blocking=True)
if i == 0 and epoch % args.image_log_interval == 0 and args.multiprocessing_distributed and args.rank % ngpus_per_node == 0:
eximg0 = wandb.Image(images[0][0].permute(1,2,0).cpu().numpy())
eximg1 = wandb.Image(images[1][0].permute(1,2,0).cpu().numpy())
wandb.log({"example comparison image": [eximg0, eximg1]})
# compute output
if args.rotnet:
use_images = images[0]
nimages = use_images.shape[0]
n_rot_images = 4*use_images.shape[0]
# rotate images all 4 ways at once
rotated_images = torch.zeros([n_rot_images, use_images.shape[1], use_images.shape[2], use_images.shape[3]]).cuda()
rot_classes = torch.zeros([n_rot_images]).long().cuda()
rotated_images[:nimages] = use_images
# rotate 90
rotated_images[nimages:2*nimages] = use_images.flip(3).transpose(2,3)
rot_classes[nimages:2*nimages] = 1
# rotate 180
rotated_images[2*nimages:3*nimages] = use_images.flip(3).flip(2)
rot_classes[2*nimages:3*nimages] = 2
# rotate 270
rotated_images[3*nimages:4*nimages] = use_images.transpose(2,3).flip(3)
rot_classes[3*nimages:4*nimages] = 3
# if i == 0:
# eximg0 = wandb.Image(use_images[0].permute(1,2,0).cpu().numpy())
# eximg1 = wandb.Image(rotated_images[0].permute(1,2,0).cpu().numpy())
# wandb.log({"example rotated image": [eximg0, eximg1]})
target = rot_classes
output = model(head="rotnet", im_q=rotated_images)
rot_loss = criterion(output, target)
rot_losses.update(rot_loss.item(), images[0].size(0))
if not args.nomoco:
output, target = model(head="moco", im_q=images[0], im_k=images[1])
moco_loss = criterion(output, target)
moco_losses.update(moco_loss.item(), images[0].size(0))
# acc1/acc5 are (K+1)-way contrast classifier accuracy
# measure accuracy and record loss
if args.rotnet:
topk=(1,)
else:
topk=(1,5)
accs = accuracy(output, target, topk=topk)
top1.update(accs[0][0], output.size(0))
if args.rotnet:
top5.update(0, output.size(0))
else:
top5.update(accs[1][0], output.size(0))
optimizer.zero_grad()
if not args.nomoco and args.rotnet:
rot_loss.backward(retain_graph=True)
moco_loss.backward()
loss = rot_loss.item() + moco_loss.item()
elif not args.nomoco:
moco_loss.backward()
loss = moco_loss.item()
elif args.rotnet:
rot_loss.backward()
loss = rot_loss.item()
losses.update(loss)
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, main_node, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
self.main_node = main_node
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
if self.main_node:
wandb.log({meter.name: meter.avg for meter in self.meters})
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate based on schedule"""
lr = args.lr
if args.cos: # cosine lr schedule
lr *= 0.5 * (1. + math.cos(math.pi * epoch / args.epochs))
else: # stepwise lr schedule
for milestone in args.schedule:
lr *= 0.1 if epoch >= milestone else 1.
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class TopRandAugment(RandAugment):
def __init__(self, n, m, topk):
super().__init__(n, m)
# l = [
# (AutoContrast, 0, 1),
# (Equalize, 0, 1),
# (Invert, 0, 1),
# (Rotate, 0, 30),
# (Posterize, 0, 4),
# (Solarize, 0, 256),
# (SolarizeAdd, 0, 110),
# (Color, 0.1, 1.9),
# (Contrast, 0.1, 1.9),
# (Brightness, 0.1, 1.9),
# (Sharpness, 0.1, 1.9),
# (ShearX, 0., 0.3),
# (ShearY, 0., 0.3),
# (CutoutAbs, 0, 40),
# (TranslateXabs, 0., 100),
# (TranslateYabs, 0., 100),
# ]
# optimal orderings from rotnet results
cifar_rotnet_ordering = [
8, # contrast
15, # trans y
14, # trans x
7, # color
12, # shear y
11, # shear x
9, # brightness
4, # posterize
13, # cutout
3, # rotate
10, # sharpness
5, # solarize
2, # invert
0, # autocontrast
1, # equalize
]
print("Using top {} cifar rotnet orderings in randaug".format(topk))
self.augment_list = [self.augment_list[i] for i in cifar_rotnet_ordering][:topk]
print(self.augment_list)
if __name__ == '__main__':
main()