-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcpai.py
155 lines (123 loc) · 5.24 KB
/
cpai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# -*- coding: utf-8 -*-
"""CPAI (for CryptoCurrency Prediction AI), is developed to try to predict
future prices (or at least trends) of CryptoCurrencies.
Copyright (C) 2019 Clément POIRET
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.v
For any questions, contact me at poiret.clement[at]outlook[dot]fr"""
# Import libraries
import joblib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from keras.models import load_model
import utils.helpers as hp
import utils.neuralnet.model as md
# Global variables
N_FUTURE = 32
N_PAST = 2048
LOW_TRIGGER = .17
HIGH_TRIGGER = 1
def get_datasets(validation_set=False):
data = hp.get_data()
data.to_csv("tmp/data.csv", index=False)
time = data.time
data = data.drop(columns=["time"])
if validation_set:
data_train, y_test = hp.split(data, "close", N_FUTURE)
X_train, y_train = hp.preprocessing_pipeline(data_train, N_PAST,
N_FUTURE, False,
LOW_TRIGGER, HIGH_TRIGGER)
return time, data, X_train, y_train, y_test
else:
X_train, y_train = hp.preprocessing_pipeline(data, N_PAST, N_FUTURE,
False, LOW_TRIGGER,
HIGH_TRIGGER)
return time, data, X_train, y_train
def main():
"""Here we go again... Main function, getting data,
training model, and computing predictions."""
print("Getting X_train and y_train...")
time, data, X_train, y_train, y_test = get_datasets(validation_set=1)
#classifier = load_model("models/classifier.h5")
accuracies = md.cv(X_train,
y_train,
n_past=N_PAST,
batch_size=64,
epochs=60,
n_splits=5)
np.save("accuracies", accuracies)
print("Building classifier...")
classifier = md.train_model(X_train,
y_train,
N_PAST,
optimizer="rmsprop",
shuffle=True,
batch_size=128,
epochs=100)
classifier.save("models/classifier.h5")
print("Getting last {} hours to predict next {} hours...".format(
N_PAST, N_FUTURE))
#timepred = np.concatenate(
# (time[-N_PAST:].values,
# [time.iloc[-1] + (1 + n) * 3600 for n in range(N_FUTURE)]))
last = data.iloc[-N_PAST:, :]
last = hp.preprocessing_pipeline(last,
N_PAST,
N_FUTURE,
is_testing_set=True)
prediction = classifier.predict(last)[0].reshape(-1, 1)
ind = np.array([x for x in range(5)]).reshape(-1, 1)
prediction = np.concatenate((ind, prediction), axis=1)
prediction = prediction[prediction[:, 1].argsort()]
cat1 = hp.get_category(prediction[-1, 0])
cat2 = hp.get_category(prediction[-2, 0])
#sc = joblib.load("scalers/MinMaxScaler_predict.pkl")
#prediction = sc.inverse_transform(prediction)
coef, values = hp.reg(y_test.values, True)
last_eth = data.iloc[-N_FUTURE -
N_FUTURE:-N_FUTURE, :].close.values.reshape(-1, 1)
#prices_pred = np.concatenate((last_eth, prediction))
prices_reg = np.concatenate((last_eth, values.reshape(-1, 1)))
prices_real = np.concatenate((last_eth, y_test.values.reshape(-1, 1)))
#plt.plot(prices_pred, label="Prediction", color="red")
fig, ax = plt.subplots()
plt.plot(prices_reg,
label="Linear regression; {}".format(coef),
color="red")
plt.plot(prices_real, label="Reality", color="black")
plt.text(.05,
.1,
'Prediction 1: {} @{:.2f}'.format(cat1, prediction[-1, 1]),
horizontalalignment='left',
verticalalignment='bottom',
transform=ax.transAxes)
plt.text(.05,
.05,
'Prediction 2: {} @{:.2f}'.format(cat2, prediction[-2, 1]),
horizontalalignment='left',
verticalalignment='bottom',
transform=ax.transAxes)
plt.axvline(N_FUTURE, linestyle=":", label="End of training set")
plt.legend()
plt.savefig("prediction.png")
plt.show()
#pd.DataFrame({
# "time": timepred,
# "prediction": prices_pred[:, 0]
#}).to_csv("prediction.csv")
#prediction = regressor.predict(X_test)[0].reshape(-1, 1)
#prediction = sc.inverse_transform(prediction)
#plt.plot(y_test)
#plt.plot(prediction)
#plt.show()
if __name__ == "__main__":
main()