-
Notifications
You must be signed in to change notification settings - Fork 0
/
logger.py
114 lines (95 loc) · 3.73 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
"""
File: logger.py
Modified by: Senthil Purushwalkam
Code referenced from https://gist.github.com/gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514
Email: spurushw<at>andrew<dot>cmu<dot>edu
Github: https://github.com/senthilps8
Description:
"""
import tensorflow as tf
from torch.autograd import Variable
import numpy as np
import scipy.misc
import os
try:
from StringIO import StringIO # Python 2.7
except ImportError:
from io import BytesIO # Python 3.x
class Logger(object):
def __init__(self, log_dir, name=None):
"""Create a summary writer logging to log_dir."""
if name is None:
name = 'temp'
self.name = name
if name is not None:
try:
os.makedirs(os.path.join(log_dir, name))
except:
pass
#self.writer = tf.summary.FileWriter(os.path.join(log_dir, name),
# filename_suffix=name)
self.writer = tf.summary.FileWriter(os.path.join(log_dir, name))
else:
self.writer = tf.summary.FileWriter(log_dir, filename_suffix=name)
def scalar_summary(self, tag, value, step):
"""Log a scalar variable."""
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)])
self.writer.add_summary(summary, step)
def image_summary(self, tag, images, step):
"""Log a list of images."""
img_summaries = []
for i, img in enumerate(images):
# Write the image to a string
try:
s = StringIO()
except:
s = BytesIO()
scipy.misc.toimage(img).save(s, format="png")
# Create an Image object
img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
height=img.shape[0],
width=img.shape[1])
# Create a Summary value
img_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, i), image=img_sum))
# Create and write Summary
summary = tf.Summary(value=img_summaries)
self.writer.add_summary(summary, step)
def histo_summary(self, tag, values, step, bins=1000):
"""Log a histogram of the tensor of values."""
# Create a histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill the fields of the histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values**2))
# Drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, step)
self.writer.flush()
def to_np(self, x):
return x.data.cpu().numpy()
def to_var(self, x):
if torch.cuda.is_available():
x = x.cuda()
return Variable(x)
def model_param_histo_summary(self, model, step):
"""log histogram summary of model's parameters
and parameter gradients
"""
for tag, value in model.named_parameters():
if value.grad is None:
continue
tag = tag.replace('.', '/')
tag = self.name+'/'+tag
self.histo_summary(tag, self.to_np(value), step)
self.histo_summary(tag+'/grad', self.to_np(value.grad), step)