-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathexponentialfunctions.tex
8655 lines (8310 loc) · 310 KB
/
exponentialfunctions.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%+*** mainfile.tex
% arara: indent: {overwrite: on, trace: on, localSettings: yes}
%===================================
%
% Last edited: Jordan
% 3/4/13 (v80)
%
%===================================
\chapter{Exponential Functions}
\minitoc
\section{Introduction}
\begin{outcomes}
\begin{outcomelist}
\item Explore increasing and decreasing functions, particularly in the context of concavity;
\item Determine a function's concavity based on a table of values, a graph, or a description.
\end{outcomelist}
\end{outcomes}
In our mathematical adventures so far we have studied linear, quadratic,
and radical functions. The simplicity of these functions is useful when
introducing new concepts such as transformations, composition, and
inverse functions; but it is somewhat restrictive when we wish to
consider interesting real-world application problems.
For example, let's say that we were interested in modeling the
temperature of a hot cup of coffee since it was first poured. We cannot
write a formula for such a model yet, but perhaps \cref{exp:fig:motivatecool} depicts a reasonable
approximation of the graph of it. Or perhaps
we would like to model the growth in population of the world; again,
we can not write a formula for such a model at this stage, but you
might agree that \cref{exp:fig:motivatepop} is a likely candidate
for the graph of the model.
Clearly the functions depicted in \cref{exp:fig:motivate} belong to
a different class than those that we have considered so far. In fact, they
belong to the class known as \emph{exponential} functions, the study of
which is a fascinating topic that encompasses many applications, and a lot
of interesting mathematical features. Prepare yourself for a colorful
and exciting
journey that will take us through the landscape of some of the most useful
functions that we will every encounter.
\begin{figure}[!htb]
\centering
\mbox{}
\hfill
\begin{subfigure}{.4\textwidth}
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-10,xmax=50,
ymin=-20,ymax=100,
xtick={-30}, ytick={-30},
minor xtick={10,20,...,50},
minor ytick={20,40,...,100},
xlabel={$t$},
grid=minor,
]
\addplot+[->]expression[domain=0:50,samples=50]{40*exp(-x/10)+50};
\end{axis}
\end{tikzpicture}
\caption{}
\label{exp:fig:motivatecool}
\end{subfigure}%
\hfill
\begin{subfigure}{.4\textwidth}
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-10,xmax=50,
ymin=-20,ymax=100,
xtick={-30}, ytick={-30},
minor xtick={10,20,...,50},
minor ytick={20,40,...,100},
xlabel={$t$},
grid=minor,
]
\addplot+[->]expression[domain=0:45,samples=50]{(1.1)^x+20};
\end{axis}
\end{tikzpicture}
\caption{}
\label{exp:fig:motivatepop}
\end{subfigure}
\hfill
\mbox{}
\caption{}
\label{exp:fig:motivate}
\end{figure}
\begin{pccexample}
%===================================
% Author: Barkin
% Date: April 2011
%===================================
Congratulations, you've been offered a job! Human Resources told you
that you would start out making \SI{2}{\centunit} on the first day, and every day you work thereafter your pay will double.
Would you take this job?
\begin{table}[!htb]
\begin{minipage}{.5\textwidth}
\centering
\caption{}
\label{exp:tab:salary}
\begin{tabular}{S[table-format=2.0]S[table-format=10.0]}
\beforeheading
\heading{$d$ (days worked)} & \heading{$p$ (cents)} \\\afterheading
1 & 2 \\\normalline
2 & 4 \\\normalline
3 & 8 \\\normalline
4 & 16 \\\normalline
5 & 32 \\\normalline
10 & 1024 \\\normalline
30 & 1073741824 \\\lastline
\end{tabular}
\end{minipage}%
\begin{minipage}{.5\textwidth}
\centering
\caption{}
\label{exp:tab:salaryalt}
\begin{tabular}{S[table-format=2.0]l}
\beforeheading
\heading{$d$ (days worked)} & \heading{$p$ (cents)} \\\afterheading
1 & $2$ \\\normalline
2 & $2^2$ \\\normalline
3 & $2^3$ \\\normalline
4 & $2^4$ \\\normalline
5 & $2^5$ \\\normalline
10 & $2^{10}$ \\\normalline
30 & $2^{30}$ \\\lastline
\end{tabular}
\end{minipage}%
\end{table}
\Cref{exp:tab:salary} shows how much money you would make per day,
in cents, for the first 5 days, and how much you would make on the 10th and 30th days.
The amount you make on day 30 is 1073741824 cents, which is
\[
\$10\textrm{,}737\textrm{,}418.24
\]
That's over 10 million dollars in a single day! How did this happen? Can we develop
a formula to help us understand the mathematics behind this?
It seems that the dollar amount is multiplied by 2 each day. An alternative way
of writing our daily income is shown in \cref{exp:tab:salaryalt}. Can we write
a formula that calculates the pay, $p$, in cents, as a function of the number of days
worked, $d$?
According to \cref{exp:tab:salaryalt}, it appears that the day of the month is in the exponent,
so let's write
\[
p = 2^{d}
\]
where $d$ is a positive integer. This is our first example of an exponential function -- exploring
these types of functions is our primary goal in this chapter.
\end{pccexample}
\begin{pccdefinition}[Exponential functions]
An exponential function is a function $f$ that can be described with the formula
\[
f(x)=a\,b^x
\]
where $a$ is a non-zero real number ($a\in\mathbb{R}, a\ne 0$) and $b$ is a positive
number other than 1 ($b>0$, $b\neq1$). Notice that the variable is in the exponent
and the base is the fixed constant $b$.
Note that in an exponential term the base is fixed and the variable is in the
exponent (e.g. $5\cdot 4^x$), whereas in a polynomial term the exponent is fixed the base is the variable (e.g $6x^3$).
\end{pccdefinition}
%===================================
% Author: Hughes
% Date: Feb 2011
%===================================
\begin{pccexample}[Rice on a chessboard]\label{exp:prob:queenschessboard}%
Many years ago there lived a Queen who loved to play games; so much so, that
she had a jester dedicated to devising interesting games for her. The Queen
particularly enjoyed mathematical games.
One day the jester brought her a chessboard (see \cref{exp:fig:grainsofrice}) and a bucket filled with rice.
\begin{table}[!htb]
\centering
\caption{}
\label{exp:tab:grainsofrice}
\begin{tabular}[t]{S[table-format=2.0]S[table-format=10.0]}
\beforeheading
\heading{square on board} & \heading{grains of rice} \\
\heading{$x$} & \heading{$g(x)$} \\
\afterheading
1 & 3 \\\normalline
2 & 9 \\\normalline
3 & 27 \\\normalline
4 & 81 \\\normalline
\mbox{\vdots} & \mbox{\vdots} \\\normalline
\mbox{\vdots} & \mbox{\vdots} \\\normalline
20 & 3486784401 \\\normalline
\mbox{\vdots} & \mbox{\vdots} \\\normalline
\mbox{\vdots} & \mbox{\vdots} \\\normalline
\mbox{$x$} & \mbox{$3^x$} \\\lastline
\end{tabular}
\end{table}
\begin{marginfigure}
\centering
\begin{tikzpicture}[scale=.25]
\foreach \x in {0,...,7} \foreach \y in {0,...,7}
{
\pgfmathparse{mod(\x+\y,2) ? "black" : "white"}
\edef\colour{\pgfmathresult}
\path[fill=\colour] (\x,\y) rectangle ++ (1,1);
}
\draw (0,0)--(0,8)--(8,8)--(8,0)--(0,0);
\end{tikzpicture}
\captionof{figure}{}
\label{exp:fig:grainsofrice}
\end{marginfigure}
The jester asked the Queen to follow these instructions
\begin{itemize}
\item Place 3 grains of rice on the square in the lower left hand corner of the board.
\item Place 9 grains of rice on the square immediately to the right of the square you were just working with.
\item Place 27 grains of rice on the square immediately to the right of the square you were just working with.
\end{itemize}
The Queen starts to notice a pattern, and records her findings in \cref{exp:tab:grainsofrice}. She also notes
that as she progresses from square to square, the number of grains appears to be \emph{tripling} each time.
The Queen, being mathematically inclined, decides to try to model
the game using a formula. She decides to let $x$ be the number
corresponding to the square on the chessboard, and let $g(x)$ represent
the number of grains of rice on that square, and assumes that she
works each row from left to right as she moves up the chessboard.
\begin{marginfigure}
\centering
\begin{tikzpicture}
\begin{axis}[
width=.75\textwidth,
xmin=-5, xmax=5,
ymin=-1, ymax=10,
]
\addplot expression[domain=-4:2.0959]{3^x};
\end{axis}
\end{tikzpicture}
\captionof{figure}{$g$}
\label{exp:fig:queensgraph}
\end{marginfigure}
The Queen notices that each of the numbers she writes in \cref{exp:tab:grainsofrice}
can be written as a power of $3$, and concludes that the formula for the number
of grains on square $x$ of the chessboard is
\[
g(x)=3^x
\]
The Queen decides to test her formula by calculating the number of grains
on the \nth{17} square. She finds that
\[
g(17)=\num{129 140 163}
\]
and says that there are (or would be, if they could fit) \num{129 140 163} grains of rice on the \nth{17} square -- wow!
Of course, the Queen knows that this formula only works when $x$ takes the
integer values $\{1,2,\ldots,64\}$, but wonders what would happen if
she graphed $g$ on her calculator (which she always has with her for just
such a situation). The Queen graphs $g$ on her calculator assuming
that $g$ can take values outside of the contextual domain, and
obtains the graph in \cref{exp:fig:queensgraph}.
The Queen concludes that $g$ is increasing at a faster and faster rate, and
cannot imagine ever being able to fit the appropriate amount of rice on
each square.
\end{pccexample}
\begin{doyouunderstand}
\begin{problem}
Repeat \cref{exp:prob:queenschessboard}, but instead of \emph{tripling} the
number of grains of rice on each square, try \emph{quadrupling} them.
\begin{shortsolution}
The equivalent of the function $g$ is $h$ and has formula $h(x)=4^x$.
\end{shortsolution}
\end{problem}
\end{doyouunderstand}
We have so far seen two exponential functions, $p$ and $g$, both of which increase
at a faster and faster rate. You may wonder if all exponential functions behave in this way --
the next example demonstrates that they do not.
%===================================
% Author: Hughes
% Date: Feb 2011
%===================================
\begin{pccexample}[Folding paper]
Have you ever tried to fold a piece of paper in half more than 7 times? No matter the size
of the paper, it becomes quite difficult -- the MythBusters tried quite an elaborate experiment
along these lines.\footnote{\href{http://www.youtube.com/watch?v=kRAEBbotuIE}{http://www.youtube.com/watch?v=kRAEBbotuIE}}
We are going to experiment with paper folding and study the mathematics behind the results.
The area of a `letter' sheet of paper is $\SI{8.5 x 11}{\inch}$, or $\SI{93.5}{\square\inch}$. We will
use two decimal places in what follows.
If we fold a sheet of letter paper in half, the visible surface area is
\begin{align*}
\frac{\SI{93.52}{\square\inch}}{2} & =\left(\frac{1}{2}\right)\SI{93.5}{\square\inch} \\
& =\SI{46.75}{\square\inch}
\end{align*}
Note that we say, `visible', because the actual surface area of the paper has not changed.
If we fold the sheet in half again, the visible surface area is
\begin{align*}
\frac{\SI{46.75}{\square\inch}}{2} & = \frac{\SI{93.52}{\square\inch}}{4} \\
& = \left(\frac{1}{2}\right)^2\SI{93.5}{\square\inch} \\
& \approx \SI{23.38}{\square\inch}
\end{align*}
If we fold the sheet in half a third time, the visible surface area is
\begin{align*}
\frac{\SI{93.5}{\square\inch}}{8} & = \left( \frac{1}{2}\right)^3\SI{93.5}{\square\inch} \\
& \approx \SI{11.69}{\square\inch}
\end{align*}
Let's try and generalize our results by letting $x$ be the number of
paper folds; $x$ will start at 0, and increase in integer values.
\Cref{exp:tab:foldingpaper} has two columns, one for the number of folds (up to 7), and one for the visible surface area
of the (folded) paper.
\begin{table}[!htb]
\begin{minipage}{.5\textwidth}
\centering
\captionof{table}{}
\label{exp:tab:foldingpaper}
\begin{tabular}{S[table-format=1.0]S[table-format=2.2]}
\beforeheading
\heading{number of folds} & \heading{visible area} \\
\heading{$x$} & \heading{($\si{\inch\squared}$)} \\
\afterheading
0 & 93.50 \\\normalline
1 & 46.75 \\\normalline
2 & 23.38 \\\normalline
3 & 11.69 \\\normalline
4 & 5.84 \\\normalline
5 & 2.92 \\\normalline
6 & 1.46 \\\normalline
7 & 0.73 \\\lastline
\end{tabular}
\end{minipage}%
\begin{minipage}{.5\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
width=.75\textwidth,
xmin=-5, xmax=5,
ymin=-50, ymax=400,
ytick={50,100,...,350},
]
\addplot expression[domain=-2:4]{93.5*(1/2)^x};
\end{axis}
\end{tikzpicture}
\captionof{figure}{$y=A(x)$}
\label{exp:fig:foldingpaper}
\end{minipage}%
\end{table}
If we let $A(x)$ represent the visible surface area of the paper after $x$ folds, then
a formula for $A$ is
\[
A(x) = 93.5\left(\frac{1}{2}\right)^x
\]
where $x=0,1,2,\ldots$. If we allow $A$ to take values outside of its contextual domain, then
we can graph $y=A(x)$ on a graphing calculator, and obtain \cref{exp:fig:foldingpaper}. Notice
in particular that $A$ decreases at a slower and slower rate.
\end{pccexample}
The graphs of exponential functions have certain features that tell us a lot about the quantities they are modeling. Graphical features like increasing/decreasing and the position of any asymptotes translate to important information about population sizes, bank accounts, and more.
%===================================
% Author: Hughes
% Date: April 2011
%===================================
\begin{pccexample}\label{exp:ex:asymptote}
Consider the function $f$ in \cref{exp:fig:expmotivation}.
There are a number of features that we can note:
\begin{itemize}
\item $f$ is increasing;
\item $f$ is concave up; in particular, $f$ is increasing at a faster and faster rate;
\item the line $y=3$ is a horizontal asymptote of $f$ as $x\to -\infty$;
\item $f(x)\to\infty$ as $x\to\infty$;
\item the range of $f$ is $(3,\infty)$.
\end{itemize}
Note that $f$ never touches its horizontal asymptote (see \cref{exp:fig:closeup}).
\end{pccexample}
\begin{figure}[!htb]
\begin{minipage}[t]{.5\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-6,xmax=6,
ymin=-1,ymax=10,
xtick={-5,-4,...,5},
minor ytick={1,3,...,9},
ytick={2,4,...,8},
grid=both,
]
\addplot expression[domain=-6:2.807]{2^x+3};
\addplot[asymptote]coordinates{(-6,3)(6,3)};
\end{axis}
\end{tikzpicture}
\caption{$f(x)=2^x+3$}
\label{exp:fig:expmotivation}
\end{minipage}%
\begin{minipage}[t]{.5\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
width=.5\textwidth,
axis x line=box,
axis y line=box,
axis line style={-},
xmin=-6,xmax=-3,
ymin=2,ymax=4,
xtick={-6,-5,...,-3},
ytick={2,2.5,...,4},
grid=both,
]
\addplot expression[domain=-6:-3]{2^x+3};
\addplot[asymptote]coordinates{(-6,3)(6,3)};
\end{axis}
\end{tikzpicture}
\caption{Close up!}
\label{exp:fig:closeup}
\end{minipage}%
\end{figure}
%===================================
% Author: Hughes
% Date: February 2012
%===================================
\begin{doyouunderstand}
\begin{problem}
Repeat \cref{exp:ex:asymptote} for each of the functions defined
by the following formulas.
\end{problem}
\begin{multicols}{2}
\begin{subproblem}[core]
$g(x)=5-4^x$
\begin{shortsolution}
The graph of $g$ is shown below. Note that
\begin{itemize}
\item $g$ is decreasing
\item $g$ is concave down; in particular $g$ is decreasing at a faster and faster rate;
\item the line $y=5$ is a horizontal asymptote of $g$ as $x\rightarrow-\infty$;
\item $g(x)\rightarrow-\infty$ as $x\rightarrow\infty$;
\item the range of $g$ is $(-\infty,5)$.
\end{itemize}
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-5,xmax=5,
ymin=-10,ymax=10,
xtick={-4,-3,...,4},
ytick={-8,-6,...,8},
grid=both,
]
\addplot expression[domain=-5:1.95]{5-4^x};
\addplot[asymptote]coordinates{(-5,5)(5,5)};
\end{axis}
\end{tikzpicture}
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$h(x)=\left( \frac{2}{3} \right)^x-4$
\begin{shortsolution}
The graph of $h$ is shown below. Note that
\begin{itemize}
\item $h$ is decreasing;
\item $h$ is concave up; in particular $h$ is decreasing at a slower and slower rate;
\item the line $y=-4$ is a horizontal asymptote of $h$ as $x\rightarrow\infty$;
\item $h(x)\rightarrow\infty$ as $x\rightarrow-\infty$;
\item the range of $h$ is $(-4,\infty)$.
\end{itemize}
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-5,xmax=5,
ymin=-10,ymax=10,
xtick={-4,-3,...,4},
ytick={-8,-6,...,8},
grid=both,
]
\addplot expression[domain=-5:5]{(2/3)^x-4};
\addplot[asymptote]coordinates{(-5,-4)(5,-4)};
\end{axis}
\end{tikzpicture}
\end{shortsolution}
\end{subproblem}
\end{multicols}
\end{doyouunderstand}
Exponential modeling will require familiarity with percentages. This example aims to
help you (re)acquaint yourself with them.
\begin{pccexample}
Wild honeybee colonies tend to have around \SI{15}{\percent} drones (males). If a colony has 4,280 bees, about how many of them are drones?
\begin{pccsolution}
The percentage \SI{15}{\percent} should be converted to a decimal in order to do arithmetic with it: 0.15.
\begin{align*}
\textrm{drone count} & = \SI{15}{\percent}\textrm{ of total bee count} \\
& =0.15\cdot4280 \\
& = 642
\end{align*}
So there are about 642 drones in the colony.
\end{pccsolution}
\end{pccexample}
\begin{pccdefinition}[Growth factor and growth rate]\label{exp:def:growthfactorrate}
An exponential function $f$ can be written in (at least) two ways.
\begin{align*}
f(t) & =a\,b^t & f(t) & =a(1+r)^t
\end{align*}
\begin{itemize}
\item The constant $b$ is called the \emph{growth factor}. When $t$ increases by $1$, the value of $f(t)$ changes by a factor of $b$; that is, every unit of time the value of $f(t)$ is multiplied by $b$.
\item The constant $r$ is called the \emph{growth rate}. We usually write $r$ as a decimal and interpret it as a percent.
When $t$ increases by $1$, the amount of change in $f(t)$ is $r$.
For example, if $r=0.10$, when $t$ increases by $1$ the value of $f(t)$
increases by \SI{10}{\percent}. Whereas if $r=-0.05$, when $t$ increases by $1$
the value of $f(t)$ decreases by \SI{5}{\percent}.
\end{itemize}
\end{pccdefinition}
%===================================
% Author: Hughes
% Date: April 2011
%===================================
\begin{pccexample}
A population is modeled by the formula $P(t) = P_0(1.15)^t$, where $t$ is the amount
of time that has passed (in years) since the population
was $P_0$. Find each of the following:
\begin{multicols}{3}
\begin{enumerate}
\item 1-year growth factor and 1-year growth rate
\item 2-year growth factor and 2-year growth rate
\item 10-year growth factor and 10-year growth rate
\end{enumerate}
\end{multicols}
\begin{pccsolution}
\begin{enumerate}
\item The 1-year growth factor is what we multiply $P_0$ by after one year: $(1.15)^1=1.15$. So the 1-year growth factor is 1.15 and the 1-year growth rate is \SI{15}{\percent}.
\item The 2-year growth factor is what $P_0$ would be multiplied by after two years: $(1.15)^2\approx 1.32$. So the 2-year growth factor is about 1.32 and the 2-year growth rate is about \SI{32}{\percent}.
\item The 10-year growth factor is $(1.15)^{10}\approx 4.05$, and the 10-year growth rate is approximately \SI{305}{\percent}.
\end{enumerate}
\end{pccsolution}
\end{pccexample}
%===================================
% Author: Hughes (idea from Bill Bryson, Short History, .. chapter 20
% Date: April 2011
%===================================
\begin{pccexample}
The bacterium {\em Clostridium perfringens} can reproduce every 9 minutes.
Suppose that
there are initially 50 bacteria in a jar and that they have access to an adequate supply of nutrients.
Write a model for this situation and find the following:
\begin{multicols}{3}
\begin{enumerate}
\item 9-minute growth factor and 9-minute growth rate
\item 1-minute growth factor and 1-minute growth rate
\item 1-hour growth factor and 1-hour growth rate
\end{enumerate}
\end{multicols}
\begin{pccsolution}
Let $P(t)$ be the number of bacteria where $t$ is the amount of time that
has passed (in minutes) since the population was $50$ bacteria.
\Cref{exp:tab:bacterium} shows values of $P(t)$ for the first $27$ hours.
\begin{table}[!htb]
\centering
\caption{}
\label{exp:tab:bacterium}
\begin{tabular}{S[table-format=2.0]S[table-format=3.0]l}
\beforeheading
\heading{$t$} & \heading{$P(t)$} & \heading{Exponential form} \\
\afterheading
0 & 50 & $50\cdot 2^{\nicefrac{0}{9}}=50\cdot 2$ \\\normalline
9 & 100 & $50\cdot 2^{\nicefrac{9}{9}}=50\cdot 2^1$ \\\normalline
18 & 200 & $50\cdot 2^{\nicefrac{18}{9}}=50\cdot 2^2$ \\\normalline
27 & 400 & $50\cdot 2^{\nicefrac{27}{9}}=50\cdot 2^3$ \\\lastline
\end{tabular}
\end{table}
We can deduce from \cref{exp:tab:bacterium} that
\[
P(t) = 50\cdot 2^{\nicefrac{t}{9}}
\]
\begin{enumerate}
\item The 9-minute growth factor is $2^{\nicefrac{9}{9}} = 2.00$, and the 9-minute growth rate is \SI{100}{\percent} (not surprising since
we knew the population doubled in 9 minutes).
\item The 1-minute growth factor is $2^{\nicefrac{1}{9}}\approx 1.08$, and the 1-minute growth rate is approximately \SI{8}{\percent}.
\item The 1-hr growth factor is $2^{\nicefrac{60}{9}}\approx 101.59$ (or \SI{10159}{\percent}), and the 1-hr growth rate is approximately \SI{10059}{\percent}.
\end{enumerate}
\end{pccsolution}
\end{pccexample}
\investigation*{}
%===================================
% Author: Pettit
% Date: April 2011
%===================================
\begin{problem}[The Legend of Payasam]
\Cref{exp:prob:queenschessboard} is a version of the Legend of Payasam.
According to legend, Lord Krishna once appeared in the form of a sage in the court of a
king who ruled a region of southern India. Lord Krishna challenged the king to a game of chess.
The king, being a chess
enthusiast, gladly accepted the challenge.
The players decided to put a wager on the game; the king let the sage choose the prize.
The sage told the
king that he was a man of few material needs, and thus all he wished for was a few grains of rice.
The sage suggested that the amount of rice should be determined
using the chessboard in the following manner.
Two grains of rice will be placed on the first square, four grains on the second square, eight
on the third square, and so on. That is, every square will have double the
number of grains as its predecessor.
Upon hearing the demand, the king was unhappy since the sage requested only a few grains of
rice instead of other riches from the kingdom.
We are going to attach monetary value to our calculations. We will assume that
\begin{itemize}
\item there are approximately 7200 grains of rice in a cup;
\item there are 3 cups of rice in a 1-lb bag;
\item a 1-lb bag of rice is worth \$2.
\end{itemize}
\begin{subproblem}[core]
Approximate the number of grains of rice that are in a 1-lb bag.
\begin{shortsolution}
There are approximately $7200\cdot 3 = 21600$ grains of rice in a 1-lb bag.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
What is the first square on the chessboard that could be used to fill a 1-lb bag (without using rice
from the previous squares)?
\begin{shortsolution}
$2^{15}=32768>21600$. The 15th square.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}[core]\label{exp:prob:greedy}
Before we begin our money calculations, write down how much money you would like
to get as a prize from the king.
\begin{shortsolution}
Answers will vary.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}\label{exp:prob:ricevalue}
If you were to exchange the rice on the 16th square for money, how much would you get?
\begin{shortsolution}
The 16th square would give us $2^{16}/21600\approx 3.03$ bags of rice. We would get approximately \$6
from the rice on the 16th square.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
Using the value you obtained in \cref{exp:prob:ricevalue}, determine the value
of the rice on the 17th square.
\begin{shortsolution}
Using the previous value of \$6, we would obtain \$12 from the rice on the 17th square.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
Using the value you obtained in \cref{exp:prob:ricevalue}, determine the first square
that would give you more than \$1,000,000 worth of rice.
\begin{shortsolution}
$6\cdot 2^{18}\approx 1572864>1000000$. We would only have to get to the 34th square on the board in
order to get \$1,000,000 worth of rice.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
Using the value you obtained in \cref{exp:prob:ricevalue}, determine the value
of the rice put on the last square.
\begin{shortsolution}
$\$6\cdot 2^{48}\approx \$ 1.68884986\times 10^{15}$. Quite a lot.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
How does the value of the rice on the last square compare to the amount you wrote down in \cref{exp:prob:greedy}?
\begin{shortsolution}
Answers will vary.
\end{shortsolution}
\end{subproblem}
\end{problem}
%===================================
% Author: Simonds
% Date: Feb 2011
%===================================
\begin{problem}[Changing Rates of Change]
\begin{subproblem} \label{exp:prob:graphsofincreasingfunctions}
The graphs of several increasing functions are given in \crefrange{exp:fig:functionm}{exp:fig:functiono}.
For each function, decide whether the function increases at a constant rate, increases at an increasing
rate (concave up), or increases at a slower and slower rate (concave down).
\begin{shortsolution}
$m(x)$ in \cref{exp:fig:functionm} is increasing at a faster and faster rate,
$n(x)$ in \cref{exp:fig:functionn} is increasing at a faster and faster rate,
and $o(x)$ in \cref{exp:fig:functiono} is increasing at a slower and slower rate.
\end{shortsolution}
\end{subproblem}
\begin{figure}[!htb]
\mbox{}\hfill
\begin{minipage}{.25\textwidth}
\begin{tikzpicture}
\begin{axis}[
xmin=-2,xmax=7,
ymin=-3,ymax=16,
xtick={-1,...,6},
]
\addplot+[->]expression[domain=0:3.87]{x^2+1};
\end{axis}
\end{tikzpicture}
\caption{$y=m(x)$}
\label{exp:fig:functionm}
\end{minipage}%
\hfill
\begin{minipage}{.25\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
xmin=-2,xmax=7,
ymin=-3,ymax=16,
xtick={-1,...,6},
]
\addplot expression[domain=-2:3.9]{2^x+1};
\end{axis}
\end{tikzpicture}
\caption{$y=n(x)$}
\label{exp:fig:functionn}
\end{minipage}%
\hfill
\begin{minipage}{.25\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
xmin=-2,xmax=7,
ymin=-3,ymax=16,
xtick={-1,...,6},
]
\addplot+[->]expression[domain=0.01:6.5]{(25*x)^(1/2)+1};
\end{axis}
\end{tikzpicture}
\caption{$y=o(x)$}
\label{exp:fig:functiono}
\end{minipage}
\hfill
\mbox{}
\end{figure}
\begin{subproblem}\label{exp:prob:tablesofincreasingfunctions}
\Crefrange{exp:tab:functionp}{exp:tab:functionr} show values for $3$ increasing functions.
For each function, decide whether the function increases at a constant rate, increases at an increasing
rate (concave up), or increases at a slower and slower rate (concave down).
\begin{shortsolution}
$p(x)$ is increasing at a constant rate, $q(x)$ is increasing at a slower and slower rate,
and $r(x)$ is increasing at a faster and faster rate.
\end{shortsolution}
\begin{table}[!htb]
\centering
\hfill
\begin{minipage}{0.25\textwidth}
\centering
\caption{$y=p(x)$}
\begin{tabular}{S[table-format=2.0]S[table-format=2.0]}
\beforeheading
\heading{$x$} & \heading{$y$} \\
\afterheading
1 & 3 \\\normalline
2 & 8 \\\normalline
4 & 18 \\\normalline
8 & 38 \\\normalline
16 & 78 \\\lastline
\end{tabular}
\label{exp:tab:functionp}
\end{minipage}
\hfill
\begin{minipage}{0.25\textwidth}
\centering
\caption{$y=q(x)$}
\begin{tabular}{S[table-format=2.0]S[table-format=2.0]}
\beforeheading
\heading{$x$} & \heading{$y$} \\
\afterheading
1 & 6 \\\normalline
4 & 7 \\\normalline
9 & 8 \\\normalline
16 & 9 \\\normalline
25 & 10 \\\lastline
\end{tabular}
\label{exp:tab:functionq}
\end{minipage}
\hfill
\begin{minipage}{0.25\textwidth}
\centering
\caption{$y=r(x)$}
\begin{tabular}{S[table-format=1.0]S[table-format=2.0]}
\beforeheading
\heading{$x$} & \heading{$y$} \\
\afterheading
1 & 4 \\\normalline
2 & 8 \\\normalline
3 & 16 \\\normalline
4 & 32 \\\normalline
5 & 64 \\\lastline
\end{tabular}
\label{exp:tab:functionr}
\end{minipage}
\hfill
\mbox{}
\end{table}
\end{subproblem}
\begin{subproblem}
Several functions are described below. For each function, decide whether the function
increases at a constant rate, increases at a faster and faster rate (concave up), or increases at a slower and slower rate (concave down).
\begin{enumerate}
\item The amount in a bank account where \$5000 is initially invested and the money sits
and earns interest at a rate of \SI{6}{\percent} per year.
\item The distance your car has traveled $t$ seconds after you slammed on the brakes.
\item The elevation of a typewriter that is falling, $t$ seconds after it is dropped from a plane flying at an
elevation of 30,000 feet.
\end{enumerate}
\begin{shortsolution}
In (a.), the investment is increasing at a faster and faster rate. In (b.), the distance is
increasing, but at a slower and slower rate. In (c.), the elevation is decreasing at a faster and faster rate, as
the speed increases.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
For each function below, decide whether the function increases at a constant rate, increases at an
increasing rate (concave up), or increases at a slower and slower rate (concave down).
\begin{enumerate}
\item The function $f$, where $f(x)=3+2\sqrt{x}$
\item The function $g$, where $g(x)=3+2x$
\item The function $h$, where $h(x)=3+2(4^x)$
\end{enumerate}
\begin{shortsolution}
(a.) is increasing at a slower and slower rate, (b.) is increasing at a constant rate, and (c.) is
increasing at a faster and faster rate.
\end{shortsolution}
\end{subproblem}
\end{problem}
%===================================
% Author: Vega
% Date: March 2011
%===================================
\begin{problem}[Medication]
A medication is injected into your body. The amount of medication in your
body decays exponentially over time. The original dose you receive is $\SI{4}{\cubiccm}$, and
the amount in your body decays at a rate of \SI{8.5}{\percent} per hour.
\begin{subproblem}
Let $Q(t)$ be the amount of medication in your body (in \si{\cubiccm}) at time $t$ in hours since
it was injected. Write a formula for $Q(t)$.
\begin{shortsolution}
$Q(t)=4(0.915)^t$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
What are the growth rate and growth factor of $Q$?
\begin{shortsolution}
The growth factor is $0.915$, and the growth rate is $\SI{-8.5}{\percent}$. (We could also say that the decay rate is $\SI{8.5}{\percent}$.)
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
According to your model, does the medication ever go away completely? Why or why not?
\begin{shortsolution}
No; the model is a limited in this way.
\end{shortsolution}
\end{subproblem}
\end{problem}
%===================================
% Author: Adams (Jordan)
% Date: June 2012
%===================================
\begin{problem}[Melting of Arctic Sea Ice]
Using satellite imagery, scientists now believe that the Arctic sea ice cover is being reduced in area by 8\% every ten years. In September of 2005 the area of the ice cover was $\SI{5.35}{\million\kilo\meter\squared}$, according to the National Snow and Ice Data Center\footnote{\href{http://nsidc.org/}{http://nsidc.org/}}.
\begin{subproblem}
Generate an exponential model for the melting of the Arctic sea ice cover.\label{exp:prob:iceexpmodel}
\begin{shortsolution}
$A(t)=5.35(0.92)^t$, where $t$ is the number of decades since 2005, and $A(t)$ is measured in $\si{\million\kilo\meter\squared}$.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
Find the half-life of the ice. In what year will the Arctic sea ice reach half of its 2005 level?\label{exp:prob:icehalflife}
\begin{shortsolution}
A graph indicates that about $8.3$ decades after 2005 (or in 2088), the Arctic sea ice cover will have reached half of its 2005 level. So the half-life of the ice is 8.3 decades.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
According to your model, what was the area in 1995? \label{exp:prob:1995ice}
\begin{shortsolution}
$A(-1)=5.35(0.92)^{-1}\approx5.82$. According to the model, in 1995 the Arctic sea ice level was about $\SI{5.82}{\million\kilo\meter\squared}$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
Use the two data points you determined in \cref{exp:prob:icehalflife,exp:prob:1995ice} to generate a \emph{linear} model for the melting of the Arctic sea ice cover. Comment on the differences in your two models' predictions for 2010, 2030, and 2050. \label{exp:prob:icelinmodel}
\begin{shortsolution}
Using $B(t)$ to represent a linear model for the ice cover, where $t$ is measured in decades since 2005, $B$ has slope of $2.675-5.815/8.3-(-1)$\si{\million\kilo\meter\squared\per\decade}
or \SI{-0.3377}{\million\kilo\meter\squared\per\decade}. Using the point-slope form of a line equation, $B(t)=-0.3377(t+1)+5.815$.
For the year 2010, $t=0.5$. $A(0.5)\approx5.13$ and $B(0.5)\approx5.31$. So in 2010, the exponential model predicts lower ice cover than the linear model.
For the year 2030, $t=2.5$. $A(2.5)\approx4.34$ and $B(2.5)\approx4.63$. So in 2030, the exponential model still predicts lower ice cover than the linear model, and the difference is larger than it was in 2010.
For the year 2050, $t=4.5$. $A(4.5)\approx3.67$ and $B(4.5)\approx3.95$. So in 2050, the exponential model still predicts lower ice cover than the linear model.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
When do each of your models (from \cref{exp:prob:iceexpmodel,exp:prob:icelinmodel}) predict the Arctic sea ice cover will melt to less than $\SI{100}{\kilo\meter\squared}$?
\begin{shortsolution}
Since $A(t)$ and $B(t)$ are measured in $\si{\million\kilo\meter\squared}$, we should work with the value $\SI{0.0001}{\million\square\kilo\meter}$. A graph shows that $B(16.2)\approx0.0001$ and $A(130.5)\approx0.0001$. So the linear model predicts that after 6.2 decades (in 2212) the Arctic sea ice cover will melt to less than $\SI{100}{\square\kilo\meter}$. The exponential model predicts that this will not happen for 130.5 decades, or until the year 3310.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
Graph your exponential model twice. For the first graph, choose a scale
which supports the view that these changes are minimal and nothing to
worry about. For the second graph, choose a scale which supports the view that these changes are drastic and of great concern. When reading graphs produced by someone else which seem to support a particular opinion, what aspects of the graphs are important to consider?
\begin{shortsolution}
\begin{tikzpicture}
\begin{axis}[
xmin=-0.1,xmax=0.8,
ymin=-1,ymax=10,
xtick={-0.1,0,...,0.8},
ytick={0,...,10},
xlabel={$t$},
]
\addplot+[->]expression[domain=-0.1:0.8]{5.35*0.92^x};
\legend{$y=A(t)$}
\end{axis}
\end{tikzpicture}
\begin{tikzpicture}
\begin{axis}[
xmin=-5,xmax=40,
ymin=-1,ymax=10,
xtick={-5,0,...,40},
ytick={0,...,10},
xlabel={$t$},
]
\addplot+[->]expression[domain=-5:40]{5.35*0.92^x};
\legend{$y=A(t)$}
\end{axis}
\end{tikzpicture}
One should consider the scale of a graph and location of the origin when reading graphs.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
If all the ice melts in the summer, does this mean that the Arctic sea ice cover has permanently disappeared? What effect does the disappearing Arctic sea ice cover have on the planet? Are there consequences beyond the Arctic region?
\begin{shortsolution}
Responses will vary.
\end{shortsolution}
\end{subproblem}
\end{problem}
%========================================================================
%
% Exercises
%
%========================================================================
\begin{exercises}
\begin{problem}[Exponential or not]
Decide if the following formulas correspond to exponential functions or not.
\begin{multicols}{4}
\begin{subproblem}
$f(x)=5^x$
\begin{shortsolution}
Exponential.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$g(x)=x^5$
\begin{shortsolution}
Not exponential.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$h(x)=3\cdot 2^x$
\begin{shortsolution}
Exponential.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$k(x)=-3\cdot 2^x$
\begin{shortsolution}
Exponential.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$m(x)=3x^2$
\begin{shortsolution}
Not exponential.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$n(x)=\left(\frac{1}{2}\right)^x$
\begin{shortsolution}
Exponential.
\end{shortsolution}
\end{subproblem}