-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathderive_wp.yaml
80 lines (73 loc) · 2.53 KB
/
derive_wp.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
wp_maker:
_target_: derive_wp.WPMaker
wp_definitions:
e:
VVTight: 0.6
VTight: 0.7
Tight: 0.8
Medium: 0.9
Loose: 0.95
VLoose: 0.98
VVLoose: 0.99
VVVLoose: 0.995
mu:
Tight: 0.995
Medium: 0.998
Loose: 0.999
VLoose: 0.9995
jet:
VVTight: 0.4
VTight: 0.5
Tight: 0.6
Medium: 0.7
Loose: 0.8
VLoose: 0.9
VVLoose: 0.95
VVVLoose: 0.98
tpr_step: 0.0001 # will evenly sample grid of values from 0 to 1 with step=tpr_step
require_wp_vs_others: True # if in computation of WP thresholds for a given `vs_type` taus should pass WPs from `WPs_to_require` against remaining `vs_types`
WPs_to_require:
e: VVVLoose
mu: VLoose
jet: VVVLoose
# convergence params
epsilon: 1e-5
n_iterations: 100
verbose: False
rounding: 4
create_df:
_target_: __main__.create_df
# path to prediction files
path_to_mlflow: ???
experiment_id: ???
run_id: ???
path_to_preds: "${create_df.path_to_mlflow}/${create_df.experiment_id}/${create_df.run_id}/artifacts/predictions/"
tau_type_to_select: tau
pred_samples: # samples in `path_to_preds` to take taus from
2016APVUL_GluGluHToTauTau_M125:
filename_pattern: 'eventTuple_*.h5' # single files, list of files and "*" are supported
sample_lumi: 19.52
reweight_to_lumi: 137.64 # total luminosity or `null` to skip reweighting
2016UL_GluGluHToTauTau_M125:
filename_pattern: 'eventTuple_*.h5'
sample_lumi: 16.81
reweight_to_lumi: 137.64
2017UL_GluGluHToTauTau_M125:
filename_pattern: 'eventTuple_*.h5'
sample_lumi: 41.48
reweight_to_lumi: 137.64
2018UL_GluGluHToTauTau_M125:
filename_pattern: 'eventTuple_*.h5'
sample_lumi: 59.83
reweight_to_lumi: 137.64
# naming conventions of prediction files
pred_group_name: predictions
pred_column_prefix: node_ # node_ // pred_
target_group_name: targets # targets // labels
target_column_prefix: node_ # node_ // label_
# add columns to apply selection on
# paths to input ROOT files will be retrieved from corresponding pred_input_filemap.json
add_columns_from: 'inputs' # either "predictions" or "inputs"
add_columns: [ 'tau_pt', 'tau_eta', 'tau_dz', 'tau_decayMode' ]
selection: '(tau_pt>=30) and (tau_pt<80) and (abs(tau_eta) < 2.3) and (abs(tau_dz) < 0.2) and not (tau_decayMode in [5,6])'
group_or_tree_name: taus # add_columns // taus -- either group name (add_columns_from=prediction) or tree name (add_columns_from=inputs)