-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathpointed_pi.hlean
1087 lines (933 loc) · 49 KB
/
pointed_pi.hlean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/-
Copyright (c) 2016 Ulrik Buchholtz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ulrik Buchholtz, Floris van Doorn
-/
import homotopy.connectedness types.pointed2 .move_to_lib .pointed
open eq pointed equiv sigma is_equiv trunc option pi function fiber
/-
In this file we define dependent pointed maps and properties of them.
Using this, we give the truncation level
of the type of pointed maps, giving the connectivity of
the domain and the truncation level of the codomain.
This is is_trunc_pmap_of_is_conn at the end.
We also prove other properties about pointed (dependent maps), like the fact that
(Π*a, F a) → (Π*a, X a) → (Π*a, B a)
is a fibration sequence if (F a) → (X a) → B a) is.
-/
namespace pointed
/- the pointed type of unpointed (nondependent) maps -/
definition pumap [constructor] (A : Type) (B : Type*) : Type* :=
pointed.MK (A → B) (const A pt)
/- the pointed type of unpointed dependent maps -/
definition pupi [constructor] {A : Type} (B : A → Type*) : Type* :=
pointed.MK (Πa, B a) (λa, pt)
notation `Πᵘ*` binders `, ` r:(scoped P, pupi P) := r
infix ` →ᵘ* `:30 := pumap
/- stuff about the pointed type of unpointed maps (dependent and non-dependent) -/
definition sigma_pumap {A : Type} (B : A → Type) (C : Type*) :
((Σa, B a) →ᵘ* C) ≃* Πᵘ*a, B a →ᵘ* C :=
pequiv_of_equiv (equiv_sigma_rec _)⁻¹ᵉ idp
definition phomotopy_mk_pupi [constructor] {A : Type*} {B : Type} {C : B → Type*}
{f g : A →* (Πᵘ*b, C b)} (p : f ~2 g)
(q : p pt ⬝hty apd10 (respect_pt g) ~ apd10 (respect_pt f)) : f ~* g :=
begin
apply phomotopy.mk (λa, eq_of_homotopy (p a)),
apply inj !eq_equiv_homotopy,
apply eq_of_homotopy, intro b,
refine !apd10_con ⬝ _,
refine whisker_right _ !apd10_eq_of_homotopy ⬝ q b
end
definition pupi_functor [constructor] {A A' : Type} {B : A → Type*} {B' : A' → Type*}
(f : A' → A) (g : Πa, B (f a) →* B' a) : (Πᵘ*a, B a) →* (Πᵘ*a', B' a') :=
pmap.mk (pi_functor f g) (eq_of_homotopy (λa, respect_pt (g a)))
definition pupi_functor_right [constructor] {A : Type} {B B' : A → Type*}
(g : Πa, B a →* B' a) : (Πᵘ*a, B a) →* (Πᵘ*a, B' a) :=
pupi_functor id g
definition pupi_functor_compose {A A' A'' : Type}
{B : A → Type*} {B' : A' → Type*} {B'' : A'' → Type*} (f : A'' → A') (f' : A' → A)
(g' : Πa, B' (f a) →* B'' a) (g : Πa, B (f' a) →* B' a) :
pupi_functor (f' ∘ f) (λa, g' a ∘* g (f a)) ~* pupi_functor f g' ∘* pupi_functor f' g :=
begin
fapply phomotopy_mk_pupi,
{ intro h a, reflexivity },
{ intro a, refine !idp_con ⬝ _, refine !apd10_con ⬝ _ ⬝ !apd10_eq_of_homotopy⁻¹, esimp,
refine (!apd10_prepostcompose ⬝ ap02 (g' a) !apd10_eq_of_homotopy) ◾
!apd10_eq_of_homotopy }
end
definition pupi_functor_pid (A : Type) (B : A → Type*) :
pupi_functor id (λa, pid (B a)) ~* pid (Πᵘ*a, B a) :=
begin
fapply phomotopy_mk_pupi,
{ intro h a, reflexivity },
{ intro a, refine !idp_con ⬝ !apd10_eq_of_homotopy⁻¹ }
end
definition pupi_functor_phomotopy {A A' : Type} {B : A → Type*} {B' : A' → Type*}
{f f' : A' → A} {g : Πa, B (f a) →* B' a} {g' : Πa, B (f' a) →* B' a}
(p : f ~ f') (q : Πa, g a ~* g' a ∘* ptransport B (p a)) :
pupi_functor f g ~* pupi_functor f' g' :=
begin
fapply phomotopy_mk_pupi,
{ intro h a, exact q a (h (f a)) ⬝ ap (g' a) (apdt h (p a)) },
{ intro a, esimp,
exact whisker_left _ !apd10_eq_of_homotopy ⬝ !con.assoc ⬝
to_homotopy_pt (q a) ⬝ !apd10_eq_of_homotopy⁻¹ }
end
definition pupi_pequiv [constructor] {A A' : Type} {B : A → Type*} {B' : A' → Type*}
(e : A' ≃ A) (f : Πa, B (e a) ≃* B' a) :
(Πᵘ*a, B a) ≃* (Πᵘ*a', B' a') :=
pequiv.MK (pupi_functor e f)
(pupi_functor e⁻¹ᵉ (λa, ptransport B (right_inv e a) ∘* (f (e⁻¹ᵉ a))⁻¹ᵉ*))
abstract begin
refine !pupi_functor_compose⁻¹* ⬝* pupi_functor_phomotopy (to_right_inv e) _ ⬝*
!pupi_functor_pid,
intro a, exact !pinv_pcompose_cancel_right ⬝* !pid_pcompose⁻¹*
end end
abstract begin
refine !pupi_functor_compose⁻¹* ⬝* pupi_functor_phomotopy (to_left_inv e) _ ⬝*
!pupi_functor_pid,
intro a, refine !passoc⁻¹* ⬝* pinv_right_phomotopy_of_phomotopy _ ⬝* !pid_pcompose⁻¹*,
refine pwhisker_left _ _ ⬝* !ptransport_natural,
exact ptransport_change_eq _ (adj e a) ⬝* ptransport_ap B e (to_left_inv e a)
end end
definition pupi_pequiv_right [constructor] {A : Type} {B B' : A → Type*} (f : Πa, B a ≃* B' a) :
(Πᵘ*a, B a) ≃* (Πᵘ*a, B' a) :=
pupi_pequiv erfl f
definition loop_pupi [constructor] {A : Type} (B : A → Type*) : Ω (Πᵘ*a, B a) ≃* Πᵘ*a, Ω (B a) :=
pequiv_of_equiv !eq_equiv_homotopy idp
-- definition loop_pupi_natural [constructor] {A : Type} {B B' : A → Type*} (f : Πa, B a →* B' a) :
-- psquare (Ω→ (pupi_functor_right f)) (pupi_functor_right (λa, Ω→ (f a)))
-- (loop_pupi B) (loop_pupi B') :=
definition ap1_gen_pi {A A' : Type} {B : A → Type} {B' : A' → Type}
{h₀ h₁ : Πa, B a} {h₀' h₁' : Πa', B' a'} (f : A' → A) (g : Πa, B (f a) → B' a)
(p₀ : pi_functor f g h₀ ~ h₀') (p₁ : pi_functor f g h₁ ~ h₁') (r : h₀ = h₁) (a' : A') :
apd10 (ap1_gen (pi_functor f g) (eq_of_homotopy p₀) (eq_of_homotopy p₁) r) a' =
ap1_gen (g a') (p₀ a') (p₁ a') (apd10 r (f a')) :=
begin
induction r, induction p₀ using homotopy.rec_idp, induction p₁ using homotopy.rec_idp, esimp,
exact apd10 (ap apd10 !ap1_gen_idp) a',
-- exact ap (λx, apd10 (ap1_gen _ x x _) _) !eq_of_homotopy_idp
end
definition ap1_gen_pi_idp {A A' : Type} {B : A → Type} {B' : A' → Type}
{h₀ : Πa, B a} (f : A' → A) (g : Πa, B (f a) → B' a) (a' : A') :
ap1_gen_pi f g (homotopy.refl (pi_functor f g h₀)) (homotopy.refl (pi_functor f g h₀)) idp a' =
apd10 (ap apd10 !ap1_gen_idp) a' :=
-- apd10 (ap apd10 (ap1_gen_idp (pi_functor id f) (eq_of_homotopy (λ a, idp)))) a' :=
-- ap (λp, apd10 p a') (ap1_gen_idp (pi_functor f g) (eq_of_homotopy homotopy.rfl)) :=
begin
esimp [ap1_gen_pi],
refine !homotopy_rec_idp_refl ⬝ !homotopy_rec_idp_refl,
end
-- print homotopy.rec_
-- print apd10_ap_postcompose
-- print pi_functor
-- print ap1_gen_idp
-- print ap1_gen_pi
definition loop_pupi_natural [constructor] {A : Type} {B B' : A → Type*} (f : Πa, B a →* B' a) :
psquare (Ω→ (pupi_functor_right f)) (pupi_functor_right (λa, Ω→ (f a)))
(loop_pupi B) (loop_pupi B') :=
begin
fapply phomotopy_mk_pupi,
{ intro p a, exact ap1_gen_pi id f (λa, respect_pt (f a)) (λa, respect_pt (f a)) p a },
{ intro a, revert B' f, refine fiberwise_pointed_map_rec _ _, intro B' f,
refine !ap1_gen_pi_idp ◾ (ap (λx, apd10 x _) !idp_con ⬝ !apd10_eq_of_homotopy) }
end
definition phomotopy_mk_pumap [constructor] {A C : Type*} {B : Type} {f g : A →* (B →ᵘ* C)}
(p : f ~2 g) (q : p pt ⬝hty apd10 (respect_pt g) ~ apd10 (respect_pt f))
: f ~* g :=
phomotopy_mk_pupi p q
definition pumap_functor [constructor] {A A' : Type} {B B' : Type*} (f : A' → A) (g : B →* B') :
(A →ᵘ* B) →* (A' →ᵘ* B') :=
pupi_functor f (λa, g)
definition pumap_functor_compose {A A' A'' : Type} {B B' B'' : Type*}
(f : A'' → A') (f' : A' → A) (g' : B' →* B'') (g : B →* B') :
pumap_functor (f' ∘ f) (g' ∘* g) ~* pumap_functor f g' ∘* pumap_functor f' g :=
pupi_functor_compose f f' (λa, g') (λa, g)
definition pumap_functor_pid (A : Type) (B : Type*) :
pumap_functor id (pid B) ~* pid (A →ᵘ* B) :=
pupi_functor_pid A (λa, B)
definition pumap_functor_phomotopy {A A' : Type} {B B' : Type*} {f f' : A' → A} {g g' : B →* B'}
(p : f ~ f') (q : g ~* g') : pumap_functor f g ~* pumap_functor f' g' :=
pupi_functor_phomotopy p (λa, q ⬝* !pcompose_pid⁻¹* ⬝* pwhisker_left _ !ptransport_constant⁻¹*)
definition pumap_pequiv [constructor] {A A' : Type} {B B' : Type*} (e : A ≃ A') (f : B ≃* B') :
(A →ᵘ* B) ≃* (A' →ᵘ* B') :=
pupi_pequiv e⁻¹ᵉ (λa, f)
definition pumap_pequiv_right [constructor] (A : Type) {B B' : Type*} (f : B ≃* B') :
(A →ᵘ* B) ≃* (A →ᵘ* B') :=
pumap_pequiv erfl f
definition pumap_pequiv_left [constructor] {A A' : Type} (B : Type*) (f : A ≃ A') :
(A →ᵘ* B) ≃* (A' →ᵘ* B) :=
pumap_pequiv f pequiv.rfl
definition loop_pumap [constructor] (A : Type) (B : Type*) : Ω (A →ᵘ* B) ≃* A →ᵘ* Ω B :=
loop_pupi (λa, B)
/- the pointed sigma type -/
definition psigma_gen [constructor] {A : Type*} (P : A → Type) (x : P pt) : Type* :=
pointed.MK (Σa, P a) ⟨pt, x⟩
definition psigma_gen_functor [constructor] {A A' : Type*} {B : A → Type}
{B' : A' → Type} {b : B pt} {b' : B' pt} (f : A →* A')
(g : Πa, B a → B' (f a)) (p : g pt b =[respect_pt f] b') : psigma_gen B b →* psigma_gen B' b' :=
pmap.mk (sigma_functor f g) (sigma_eq (respect_pt f) p)
definition psigma_gen_functor_right [constructor] {A : Type*} {B B' : A → Type}
{b : B pt} {b' : B' pt} (f : Πa, B a → B' a) (p : f pt b = b') :
psigma_gen B b →* psigma_gen B' b' :=
proof pmap.mk (sigma_functor id f) (sigma_eq_right p) qed
definition psigma_gen_pequiv_psigma_gen [constructor] {A A' : Type*} {B : A → Type}
{B' : A' → Type} {b : B pt} {b' : B' pt} (f : A ≃* A')
(g : Πa, B a ≃ B' (f a)) (p : g pt b =[respect_pt f] b') : psigma_gen B b ≃* psigma_gen B' b' :=
pequiv_of_equiv (sigma_equiv_sigma f g) (sigma_eq (respect_pt f) p)
definition psigma_gen_pequiv_psigma_gen_left [constructor] {A A' : Type*} {B : A' → Type}
{b : B pt} (f : A ≃* A') {b' : B (f pt)} (q : b' =[respect_pt f] b) :
psigma_gen (B ∘ f) b' ≃* psigma_gen B b :=
psigma_gen_pequiv_psigma_gen f (λa, erfl) q
definition psigma_gen_pequiv_psigma_gen_right [constructor] {A : Type*} {B B' : A → Type}
{b : B pt} {b' : B' pt} (f : Πa, B a ≃ B' a) (p : f pt b = b') :
psigma_gen B b ≃* psigma_gen B' b' :=
psigma_gen_pequiv_psigma_gen pequiv.rfl f (pathover_idp_of_eq p)
definition psigma_gen_pequiv_psigma_gen_basepoint [constructor] {A : Type*} {B : A → Type}
{b b' : B pt} (p : b = b') : psigma_gen B b ≃* psigma_gen B b' :=
psigma_gen_pequiv_psigma_gen_right (λa, erfl) p
definition loop_psigma_gen [constructor] {A : Type*} (B : A → Type) (b₀ : B pt) :
Ω (psigma_gen B b₀) ≃* @psigma_gen (Ω A) (λp, pathover B b₀ p b₀) idpo :=
pequiv_of_equiv (sigma_eq_equiv pt pt) idp
open sigma.ops
definition ap1_gen_sigma {A A' : Type} {B : A → Type} {B' : A' → Type}
{x₀ x₁ : Σa, B a} {a₀' a₁' : A'} {b₀' : B' a₀'} {b₁' : B' a₁'} (f : A → A')
(p₀ : f x₀.1 = a₀') (p₁ : f x₁.1 = a₁') (g : Πa, B a → B' (f a))
(q₀ : g x₀.1 x₀.2 =[p₀] b₀') (q₁ : g x₁.1 x₁.2 =[p₁] b₁') (r : x₀ = x₁) :
(λx, ⟨x..1, x..2⟩) (ap1_gen (sigma_functor f g) (sigma_eq p₀ q₀) (sigma_eq p₁ q₁) r) =
⟨ap1_gen f p₀ p₁ r..1, q₀⁻¹ᵒ ⬝o pathover_ap B' f (apo g r..2) ⬝o q₁⟩ :=
begin
induction r, induction q₀, induction q₁, reflexivity
end
definition loop_psigma_gen_natural {A A' : Type*} {B : A → Type}
{B' : A' → Type} {b : B pt} {b' : B' pt} (f : A →* A')
(g : Πa, B a → B' (f a)) (p : g pt b =[respect_pt f] b') :
psquare (Ω→ (psigma_gen_functor f g p))
(psigma_gen_functor (Ω→ f) (λq r, p⁻¹ᵒ ⬝o pathover_ap _ _ (apo g r) ⬝o p)
!cono.left_inv)
(loop_psigma_gen B b) (loop_psigma_gen B' b') :=
begin
fapply phomotopy.mk,
{ exact ap1_gen_sigma f (respect_pt f) (respect_pt f) g p p },
{ induction f with f f₀, induction A' with A' a₀', esimp at * ⊢, induction p, reflexivity }
end
definition psigma_gen_functor_pcompose [constructor] {A₁ A₂ A₃ : Type*}
{B₁ : A₁ → Type} {B₂ : A₂ → Type} {B₃ : A₃ → Type}
{b₁ : B₁ pt} {b₂ : B₂ pt} {b₃ : B₃ pt}
{f₁ : A₁ →* A₂} {f₂ : A₂ →* A₃}
(g₁ : Π⦃a⦄, B₁ a → B₂ (f₁ a)) (g₂ : Π⦃a⦄, B₂ a → B₃ (f₂ a))
(p₁ : pathover B₂ (g₁ b₁) (respect_pt f₁) b₂)
(p₂ : pathover B₃ (g₂ b₂) (respect_pt f₂) b₃) :
psigma_gen_functor (f₂ ∘* f₁) (λa, @g₂ (f₁ a) ∘ @g₁ a) (pathover_ap B₃ f₂ (apo g₂ p₁) ⬝o p₂) ~*
psigma_gen_functor f₂ g₂ p₂ ∘* psigma_gen_functor f₁ g₁ p₁ :=
begin
fapply phomotopy.mk,
{ intro x, reflexivity },
{ refine !idp_con ⬝ _, esimp,
refine whisker_right _ !ap_sigma_functor_sigma_eq ⬝ _,
induction f₁ with f₁ f₁₀, induction f₂ with f₂ f₂₀, induction A₂ with A₂ a₂₀,
induction A₃ with A₃ a₃₀, esimp at * ⊢, induction p₁, induction p₂, reflexivity }
end
definition psigma_gen_functor_phomotopy [constructor] {A₁ A₂ : Type*}
{B₁ : A₁ → Type} {B₂ : A₂ → Type} {b₁ : B₁ pt} {b₂ : B₂ pt} {f₁ f₂ : A₁ →* A₂}
{g₁ : Π⦃a⦄, B₁ a → B₂ (f₁ a)} {g₂ : Π⦃a⦄, B₁ a → B₂ (f₂ a)}
{p₁ : pathover B₂ (g₁ b₁) (respect_pt f₁) b₂} {p₂ : pathover B₂ (g₂ b₁) (respect_pt f₂) b₂}
(h₁ : f₁ ~* f₂)
(h₂ : Π⦃a⦄ (b : B₁ a), pathover B₂ (g₁ b) (h₁ a) (g₂ b))
(h₃ : squareover B₂ (square_of_eq (to_homotopy_pt h₁)⁻¹) p₁ p₂ (h₂ b₁) idpo) :
psigma_gen_functor f₁ g₁ p₁ ~* psigma_gen_functor f₂ g₂ p₂ :=
begin
induction h₁ using phomotopy_rec_idp,
fapply phomotopy.mk,
{ intro x, induction x with a b, exact ap (dpair (f₁ a)) (eq_of_pathover_idp (h₂ b)) },
{ induction f₁ with f f₀, induction A₂ with A₂ a₂₀, esimp at * ⊢,
induction f₀, esimp, induction p₂ using idp_rec_on,
rewrite [to_right_inv !eq_con_inv_equiv_con_eq at h₃],
have h₂ b₁ = p₁, from (eq_top_of_squareover h₃)⁻¹, induction this,
refine !ap_dpair ⬝ ap (sigma_eq _) _, exact to_left_inv !pathover_idp (h₂ b₁) }
end
definition psigma_gen_functor_psquare [constructor] {A₀₀ A₀₂ A₂₀ A₂₂ : Type*}
{B₀₀ : A₀₀ → Type} {B₀₂ : A₀₂ → Type} {B₂₀ : A₂₀ → Type} {B₂₂ : A₂₂ → Type}
{b₀₀ : B₀₀ pt} {b₀₂ : B₀₂ pt} {b₂₀ : B₂₀ pt} {b₂₂ : B₂₂ pt}
{f₀₁ : A₀₀ →* A₀₂} {f₁₀ : A₀₀ →* A₂₀} {f₂₁ : A₂₀ →* A₂₂} {f₁₂ : A₀₂ →* A₂₂}
{g₀₁ : Π⦃a⦄, B₀₀ a → B₀₂ (f₀₁ a)} {g₁₀ : Π⦃a⦄, B₀₀ a → B₂₀ (f₁₀ a)}
{g₂₁ : Π⦃a⦄, B₂₀ a → B₂₂ (f₂₁ a)} {g₁₂ : Π⦃a⦄, B₀₂ a → B₂₂ (f₁₂ a)}
{p₀₁ : pathover B₀₂ (g₀₁ b₀₀) (respect_pt f₀₁) b₀₂}
{p₁₀ : pathover B₂₀ (g₁₀ b₀₀) (respect_pt f₁₀) b₂₀}
{p₂₁ : pathover B₂₂ (g₂₁ b₂₀) (respect_pt f₂₁) b₂₂}
{p₁₂ : pathover B₂₂ (g₁₂ b₀₂) (respect_pt f₁₂) b₂₂}
(h₁ : psquare f₁₀ f₁₂ f₀₁ f₂₁)
(h₂ : Π⦃a⦄ (b : B₀₀ a), pathover B₂₂ (g₂₁ (g₁₀ b)) (h₁ a) (g₁₂ (g₀₁ b)))
(h₃ : squareover B₂₂ (square_of_eq (to_homotopy_pt h₁)⁻¹)
(pathover_ap B₂₂ f₂₁ (apo g₂₁ p₁₀) ⬝o p₂₁)
(pathover_ap B₂₂ f₁₂ (apo g₁₂ p₀₁) ⬝o p₁₂)
(h₂ b₀₀) idpo) :
psquare (psigma_gen_functor f₁₀ g₁₀ p₁₀) (psigma_gen_functor f₁₂ g₁₂ p₁₂)
(psigma_gen_functor f₀₁ g₀₁ p₀₁) (psigma_gen_functor f₂₁ g₂₁ p₂₁) :=
proof
!psigma_gen_functor_pcompose⁻¹* ⬝*
psigma_gen_functor_phomotopy h₁ h₂ h₃ ⬝*
!psigma_gen_functor_pcompose
qed
end pointed open pointed
namespace pointed
definition pointed_respect_pt [instance] [constructor] {A B : Type*} (f : A →* B) :
pointed (f pt = pt) :=
pointed.mk (respect_pt f)
definition ppi_of_phomotopy [constructor] {A B : Type*} {f g : A →* B} (h : f ~* g) :
ppi (λx, f x = g x) (respect_pt f ⬝ (respect_pt g)⁻¹) :=
h
definition phomotopy {A : Type*} {P : A → Type} {x : P pt} (f g : ppi P x) : Type :=
ppi (λa, f a = g a) (respect_pt f ⬝ (respect_pt g)⁻¹)
variables {A A' A'' : Type*} {P Q R : A → Type*} {P' : A' → Type*} {f g h : Π*a, P a}
{B C D : A → Type} {b₀ : B pt} {c₀ : C pt} {d₀ : D pt}
{k k' l m : ppi B b₀}
definition pppi_equiv_pmap [constructor] (A B : Type*) : (Π*(a : A), B) ≃ (A →* B) :=
by reflexivity
definition pppi_pequiv_ppmap [constructor] (A B : Type*) : (Π*(a : A), B) ≃* ppmap A B :=
by reflexivity
definition apd10_to_fun_eq_of_phomotopy (h : f ~* g)
: apd10 (ap (λ k, pppi.to_fun k) (eq_of_phomotopy h)) = h :=
begin
induction h using phomotopy_rec_idp,
xrewrite [eq_of_phomotopy_refl f]
end
-- definition phomotopy_of_eq_of_phomotopy
definition phomotopy_mk_ppi [constructor] {A : Type*} {B : Type*} {C : B → Type*}
{f g : A →* (Π*b, C b)} (p : Πa, f a ~* g a)
(q : p pt ⬝* phomotopy_of_eq (respect_pt g) = phomotopy_of_eq (respect_pt f)) : f ~* g :=
begin
apply phomotopy.mk (λa, eq_of_phomotopy (p a)),
apply inj !ppi_eq_equiv,
refine !phomotopy_of_eq_con ⬝ _, esimp,
refine ap (λx, x ⬝* _) !phomotopy_of_eq_of_phomotopy ⬝ q
end
-- definition phomotopy_mk_ppmap [constructor]
-- {A : Type*} {X : A → Type*} {Y : Π (a : A), X a → Type*}
-- {f g : Π* (a : A), Π*(x : (X a)), (Y a x)}
-- (p : Πa, f a ~* g a)
-- (q : p pt ⬝* phomotopy_of_eq (ppi_resp_pt g) = phomotopy_of_eq (ppi_resp_pt f))
-- : f ~* g :=
-- begin
-- apply phomotopy.mk (λa, eq_of_phomotopy (p a)),
-- apply inj (ppi_eq_equiv _ _),
-- refine !phomotopy_of_eq_con ⬝ _,
-- -- refine !phomotopy_of_eq_of_phomotopy ◾** idp ⬝ q,
-- end
variable {k}
variables (k l)
definition ppi_loop_equiv : (k = k) ≃ Π*(a : A), Ω (pType.mk (B a) (k a)) :=
begin
induction k with k p, induction p,
exact ppi_eq_equiv (ppi.mk k idp) (ppi.mk k idp)
end
variables {k l}
-- definition eq_of_phomotopy (h : k ~* l) : k = l :=
-- (ppi_eq_equiv k l)⁻¹ᵉ h
definition ppi_functor_right [constructor] {A : Type*} {B B' : A → Type}
{b : B pt} {b' : B' pt} (f : Πa, B a → B' a) (p : f pt b = b') (g : ppi B b)
: ppi B' b' :=
ppi.mk (λa, f a (g a)) (ap (f pt) (respect_pt g) ⬝ p)
definition ppi_functor_right_compose [constructor] {A : Type*} {B₁ B₂ B₃ : A → Type}
{b₁ : B₁ pt} {b₂ : B₂ pt} {b₃ : B₃ pt} (f₂ : Πa, B₂ a → B₃ a) (p₂ : f₂ pt b₂ = b₃)
(f₁ : Πa, B₁ a → B₂ a) (p₁ : f₁ pt b₁ = b₂)
(g : ppi B₁ b₁) : ppi_functor_right (λa, f₂ a ∘ f₁ a) (ap (f₂ pt) p₁ ⬝ p₂) g ~*
ppi_functor_right f₂ p₂ (ppi_functor_right f₁ p₁ g) :=
begin
fapply phomotopy.mk,
{ reflexivity },
{ induction p₁, induction p₂, exact !idp_con ⬝ !ap_compose⁻¹ }
end
definition ppi_functor_right_id [constructor] {A : Type*} {B : A → Type}
{b : B pt} (g : ppi B b) : ppi_functor_right (λa, id) idp g ~* g :=
begin
fapply phomotopy.mk,
{ reflexivity },
{ reflexivity }
end
definition ppi_functor_right_phomotopy [constructor] {g g' : Π(a : A), B a → C a}
{g₀ : g pt b₀ = c₀} {g₀' : g' pt b₀ = c₀} {f f' : ppi B b₀}
(p : g ~2 g') (q : f ~* f') (r : p pt b₀ ⬝ g₀' = g₀) :
ppi_functor_right g g₀ f ~* ppi_functor_right g' g₀' f' :=
phomotopy.mk (λa, p a (f a) ⬝ ap (g' a) (q a))
abstract begin
induction q using phomotopy_rec_idp,
induction r, revert g p, refine rec_idp_of_equiv _ homotopy2.rfl _ _ _,
{ intro h h', exact !eq_equiv_eq_symm ⬝e !eq_equiv_homotopy2 },
{ reflexivity },
induction g₀', induction f with f f₀, induction f₀, reflexivity
end end
definition ppi_functor_right_phomotopy_refl [constructor] (g : Π(a : A), B a → C a)
(g₀ : g pt b₀ = c₀) (f : ppi B b₀) :
ppi_functor_right_phomotopy (homotopy2.refl g) (phomotopy.refl f) !idp_con =
phomotopy.refl (ppi_functor_right g g₀ f) :=
begin
induction g₀,
apply ap (phomotopy.mk homotopy.rfl),
refine !phomotopy_rec_idp_refl ⬝ _,
esimp,
refine !rec_idp_of_equiv_idp ⬝ _,
induction f with f f₀, induction f₀, reflexivity
end
definition ppi_equiv_ppi_right [constructor] {A : Type*} {B B' : A → Type}
{b : B pt} {b' : B' pt} (f : Πa, B a ≃ B' a) (p : f pt b = b') :
ppi B b ≃ ppi B' b' :=
equiv.MK (ppi_functor_right f p) (ppi_functor_right (λa, (f a)⁻¹ᵉ) (inv_eq_of_eq p⁻¹))
abstract begin
intro g, apply eq_of_phomotopy,
refine !ppi_functor_right_compose⁻¹* ⬝* _,
refine ppi_functor_right_phomotopy (λa, to_right_inv (f a)) (phomotopy.refl g) _ ⬝*
!ppi_functor_right_id, induction p, exact adj (f pt) b ⬝ ap02 (f pt) !idp_con⁻¹
end end
abstract begin
intro g, apply eq_of_phomotopy,
refine !ppi_functor_right_compose⁻¹* ⬝* _,
refine ppi_functor_right_phomotopy (λa, to_left_inv (f a)) (phomotopy.refl g) _ ⬝*
!ppi_functor_right_id, induction p, exact (!idp_con ⬝ !idp_con)⁻¹,
end end
definition ppi_equiv_ppi_basepoint [constructor] {A : Type*} {B : A → Type} {b b' : B pt}
(p : b = b') : ppi B b ≃ ppi B b' :=
ppi_equiv_ppi_right (λa, erfl) p
definition pmap_compose_ppi [constructor] (g : Π(a : A), ppmap (P a) (Q a))
(f : Π*(a : A), P a) : Π*(a : A), Q a :=
ppi_functor_right g (respect_pt (g pt)) f
definition ppi_compose_pmap [constructor] (g : Π*(a : A), P a) (f : A' →* A) :
Π*(a' : A'), P (f a') :=
ppi.mk (λa', g (f a'))
(eq_of_pathover_idp (change_path !con.right_inv
(apd g (respect_pt f) ⬝op respect_pt g ⬝o (apd (λx, Point (P x)) (respect_pt f))⁻¹ᵒ)))
/- alternate proof for respecting the point -/
-- (eq_tr_of_pathover (apd g (respect_pt f)) ⬝ ap (transport _ _) (respect_pt g) ⬝
-- apdt (λx, Point (P x)) (respect_pt f)⁻¹)
definition ppi_compose_pmap_phomotopy [constructor] (g : A →* A'') (f : A' →* A) :
ppi_compose_pmap g f ~* g ∘* f :=
begin
refine phomotopy.mk homotopy.rfl _,
refine !idp_con ⬝ _, esimp,
symmetry,
refine !eq_of_pathover_idp_constant ⬝ _,
refine !eq_of_pathover_change_path ⬝ !eq_of_pathover_cono ⬝ _,
refine (!eq_of_pathover_concato_eq ⬝ !apd_eq_ap ◾ idp) ◾
(!eq_of_pathover_invo ⬝ (!apd_eq_ap ⬝ !ap_constant)⁻²) ⬝ _,
reflexivity
end
definition pmap_compose_ppi_ppi_const [constructor] (g : Π(a : A), ppmap (P a) (Q a)) :
pmap_compose_ppi g (ppi_const P) ~* ppi_const Q :=
proof phomotopy.mk (λa, respect_pt (g a)) !idp_con⁻¹ qed
definition pmap_compose_ppi_pconst [constructor] (f : Π*(a : A), P a) :
pmap_compose_ppi (λa, pconst (P a) (Q a)) f ~* ppi_const Q :=
phomotopy.mk homotopy.rfl !ap_constant⁻¹
definition ppi_compose_pmap_ppi_const [constructor] (f : A' →* A) :
ppi_compose_pmap (ppi_const P) f ~* ppi_const (P ∘ f) :=
phomotopy.mk homotopy.rfl
begin
exact (ap eq_of_pathover_idp (change_path_of_pathover _ _ _ !cono.right_inv))⁻¹,
end
definition ppi_compose_pmap_pconst [constructor] (g : Π*(a : A), P a) :
ppi_compose_pmap g (pconst A' A) ~* pconst A' (P pt) :=
phomotopy.mk (λa, respect_pt g) !idpo_concato_eq⁻¹
definition pmap_compose_ppi2 [constructor] {g g' : Π(a : A), ppmap (P a) (Q a)}
{f f' : Π*(a : A), P a} (p : Πa, g a ~* g' a) (q : f ~* f') :
pmap_compose_ppi g f ~* pmap_compose_ppi g' f' :=
ppi_functor_right_phomotopy p q (to_homotopy_pt (p pt))
definition pmap_compose_ppi2_refl [constructor] (g : Π(a : A), P a →* Q a) (f : Π*(a : A), P a) :
pmap_compose_ppi2 (λa, phomotopy.refl (g a)) (phomotopy.refl f) = phomotopy.rfl :=
begin
refine _ ⬝ ppi_functor_right_phomotopy_refl g (respect_pt (g pt)) f,
exact ap (ppi_functor_right_phomotopy _ _) (to_right_inv !eq_con_inv_equiv_con_eq _)
end
definition pmap_compose_ppi_phomotopy_left [constructor] {g g' : Π(a : A), ppmap (P a) (Q a)}
(f : Π*(a : A), P a) (p : Πa, g a ~* g' a) : pmap_compose_ppi g f ~* pmap_compose_ppi g' f :=
pmap_compose_ppi2 p phomotopy.rfl
definition pmap_compose_ppi_phomotopy_right [constructor] (g : Π(a : A), ppmap (P a) (Q a))
{f f' : Π*(a : A), P a} (p : f ~* f') : pmap_compose_ppi g f ~* pmap_compose_ppi g f' :=
pmap_compose_ppi2 (λa, phomotopy.rfl) p
definition pmap_compose_ppi_pid_left [constructor]
(f : Π*(a : A), P a) : pmap_compose_ppi (λa, pid (P a)) f ~* f :=
phomotopy.mk homotopy.rfl idp
definition pmap_compose_ppi_pcompose [constructor] (h : Π(a : A), ppmap (Q a) (R a))
(g : Π(a : A), ppmap (P a) (Q a)) :
pmap_compose_ppi (λa, h a ∘* g a) f ~* pmap_compose_ppi h (pmap_compose_ppi g f) :=
phomotopy.mk homotopy.rfl
abstract !idp_con ⬝ whisker_right _ (!ap_con ⬝ whisker_right _ !ap_compose') ⬝ !con.assoc end
definition ppi_assoc [constructor] (h : Π (a : A), Q a →* R a) (g : Π (a : A), P a →* Q a)
(f : Π*a, P a) :
pmap_compose_ppi (λa, h a ∘* g a) f ~* pmap_compose_ppi h (pmap_compose_ppi g f) :=
begin
fapply phomotopy.mk,
{ intro a, reflexivity },
exact !idp_con ⬝ whisker_right _ (!ap_con ⬝ whisker_right _ !ap_compose⁻¹) ⬝ !con.assoc
end
definition pmap_compose_ppi_eq_of_phomotopy (g : Πa, P a →* Q a) {f f' : Π*a, P a} (p : f ~* f') :
ap (pmap_compose_ppi g) (eq_of_phomotopy p) =
eq_of_phomotopy (pmap_compose_ppi_phomotopy_right g p) :=
begin
induction p using phomotopy_rec_idp,
refine ap02 _ !eq_of_phomotopy_refl ⬝ !eq_of_phomotopy_refl⁻¹ ⬝ ap eq_of_phomotopy _,
exact !pmap_compose_ppi2_refl⁻¹
end
definition ppi_assoc_ppi_const_right (g : Πa, Q a →* R a) (f : Πa, P a →* Q a) :
ppi_assoc g f (ppi_const P) ⬝*
(pmap_compose_ppi_phomotopy_right _ (pmap_compose_ppi_ppi_const f) ⬝*
pmap_compose_ppi_ppi_const g) = pmap_compose_ppi_ppi_const (λa, g a ∘* f a) :=
begin
revert R g, refine fiberwise_pointed_map_rec _ _,
revert Q f, refine fiberwise_pointed_map_rec _ _,
intro Q f R g,
refine ap (λx, _ ⬝* (x ⬝* _)) !pmap_compose_ppi2_refl ⬝ _,
reflexivity
end
definition pppi_compose_left [constructor] (g : Π(a : A), ppmap (P a) (Q a)) :
(Π*(a : A), P a) →* Π*(a : A), Q a :=
pmap.mk (pmap_compose_ppi g) (eq_of_phomotopy (pmap_compose_ppi_ppi_const g))
definition pppi_compose_right [constructor] (f : A' →* A) :
(Π*(a : A), P a) →* Π*(a' : A'), P (f a') :=
pmap.mk (λh, ppi_compose_pmap h f) (eq_of_phomotopy (ppi_compose_pmap_ppi_const f))
definition pppi_compose_right_phomotopy [constructor] (f : A' →* A) :
pppi_compose_right f ~* @ppcompose_right _ _ A'' f :=
begin
fapply phomotopy_mk_ppmap,
{ intro g, exact ppi_compose_pmap_phomotopy g f },
{ exact sorry }
end
-- pppi_compose_left is a functor in the following sense
definition pppi_compose_left_pcompose (g : Π (a : A), Q a →* R a) (f : Π (a : A), P a →* Q a)
: pppi_compose_left (λ a, g a ∘* f a) ~* (pppi_compose_left g ∘* pppi_compose_left f) :=
begin
fapply phomotopy_mk_ppi,
{ exact ppi_assoc g f },
{ refine idp ◾** (!phomotopy_of_eq_con ⬝
(ap phomotopy_of_eq !pmap_compose_ppi_eq_of_phomotopy ⬝ !phomotopy_of_eq_of_phomotopy) ◾**
!phomotopy_of_eq_of_phomotopy) ⬝ _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹,
apply ppi_assoc_ppi_const_right },
end
definition pppi_compose_left_phomotopy [constructor] {g g' : Π(a : A), ppmap (P a) (Q a)}
(p : Πa, g a ~* g' a) : pppi_compose_left g ~* pppi_compose_left g' :=
begin
apply phomotopy_of_eq, apply ap pppi_compose_left, apply eq_of_homotopy, intro a,
apply eq_of_phomotopy, exact p a
end
definition psquare_pppi_compose_left {A : Type*} {B C D E : A → Type*}
{ftop : Π (a : A), B a →* C a} {fbot : Π (a : A), D a →* E a}
{fleft : Π (a : A), B a →* D a} {fright : Π (a : A), C a →* E a}
(psq : Π (a :A), psquare (ftop a) (fbot a) (fleft a) (fright a))
: psquare
(pppi_compose_left ftop)
(pppi_compose_left fbot)
(pppi_compose_left fleft)
(pppi_compose_left fright)
:=
begin
refine (pppi_compose_left_pcompose fright ftop)⁻¹* ⬝* _ ⬝*
(pppi_compose_left_pcompose fbot fleft),
exact pppi_compose_left_phomotopy psq
end
definition ppi_pequiv_right [constructor] (g : Π(a : A), P a ≃* Q a) :
(Π*(a : A), P a) ≃* Π*(a : A), Q a :=
begin
apply pequiv_of_pmap (pppi_compose_left g),
apply adjointify _ (pppi_compose_left (λa, (g a)⁻¹ᵉ*)),
{ intro f, apply eq_of_phomotopy,
refine !pmap_compose_ppi_pcompose⁻¹* ⬝* _,
refine pmap_compose_ppi_phomotopy_left _ (λa, !pright_inv) ⬝* _,
apply pmap_compose_ppi_pid_left },
{ intro f, apply eq_of_phomotopy,
refine !pmap_compose_ppi_pcompose⁻¹* ⬝* _,
refine pmap_compose_ppi_phomotopy_left _ (λa, !pleft_inv) ⬝* _,
apply pmap_compose_ppi_pid_left }
end
end pointed
namespace pointed
variables {A B C : Type*}
-- TODO: replace in types.fiber
definition pfiber.sigma_char' (f : A →* B) :
pfiber f ≃* psigma_gen (λa, f a = pt) (respect_pt f) :=
pequiv_of_equiv (fiber.sigma_char f pt) idp
definition fiberpt [constructor] {A B : Type*} {f : A →* B} : fiber f pt :=
fiber.mk pt (respect_pt f)
definition psigma_fiber_pequiv [constructor] {A B : Type*} (f : A →* B) :
psigma_gen (fiber f) fiberpt ≃* A :=
pequiv_of_equiv (sigma_fiber_equiv f) idp
definition ppmap.sigma_char [constructor] (A B : Type*) :
ppmap A B ≃* @psigma_gen (A →ᵘ* B) (λf, f pt = pt) idp :=
pequiv_of_equiv !pmap.sigma_char idp
definition pppi.sigma_char [constructor] (B : A → Type*) :
(Π*(a : A), B a) ≃* @psigma_gen (Πᵘ*a, B a) (λf, f pt = pt) idp :=
proof pequiv_of_equiv !ppi.sigma_char idp qed
definition pppi_sigma_char_natural_bottom [constructor] {B B' : A → Type*} (f : Πa, B a →* B' a) :
@psigma_gen (Πᵘ*a, B a) (λg, g pt = pt) idp →* @psigma_gen (Πᵘ*a, B' a) (λg, g pt = pt) idp :=
psigma_gen_functor
(pupi_functor_right f)
(λg p, ap (f pt) p ⬝ respect_pt (f pt))
begin
apply eq_pathover_constant_right, apply square_of_eq,
esimp, exact !idp_con ⬝ !apd10_eq_of_homotopy⁻¹ ⬝ !ap_eq_apd10⁻¹,
end
definition pppi_sigma_char_natural {B B' : A → Type*} (f : Πa, B a →* B' a) :
psquare (pppi_compose_left f) (pppi_sigma_char_natural_bottom f)
(pppi.sigma_char B) (pppi.sigma_char B') :=
begin
fapply phomotopy.mk,
{ intro g, reflexivity },
{ refine !idp_con ⬝ !idp_con ⬝ _,
fapply sigma_eq2,
{ refine !sigma_eq_pr1 ⬝ _ ⬝ !ap_sigma_pr1⁻¹,
apply inj !eq_equiv_homotopy,
refine !apd10_eq_of_homotopy_fn ⬝ _ ⬝ !apd10_to_fun_eq_of_phomotopy⁻¹,
apply eq_of_homotopy, intro a, reflexivity },
{ exact sorry } }
end
open sigma.ops
definition psigma_gen_pi_pequiv_pupi_psigma_gen [constructor] {A : Type*} {B : A → Type*}
(C : Πa, B a → Type) (c : Πa, C a pt) :
@psigma_gen (Πᵘ*a, B a) (λf, Πa, C a (f a)) c ≃* Πᵘ*a, psigma_gen (C a) (c a) :=
pequiv_of_equiv sigma_pi_equiv_pi_sigma idp
definition pupi_psigma_gen_pequiv_psigma_gen_pi [constructor] {A : Type*} {B : A → Type*}
(C : Πa, B a → Type) (c : Πa, C a pt) :
(Πᵘ*a, psigma_gen (C a) (c a)) ≃* @psigma_gen (Πᵘ*a, B a) (λf, Πa, C a (f a)) c :=
pequiv_of_equiv sigma_pi_equiv_pi_sigma⁻¹ᵉ idp
definition psigma_gen_assoc [constructor] {A : Type*} {B : A → Type} (C : Πa, B a → Type)
(b₀ : B pt) (c₀ : C pt b₀) :
psigma_gen (λa, Σb, C a b) ⟨b₀, c₀⟩ ≃* @psigma_gen (psigma_gen B b₀) (λv, C v.1 v.2) c₀ :=
pequiv_of_equiv !sigma_assoc_equiv' idp
definition psigma_gen_swap [constructor] {A : Type*} {B B' : A → Type}
(C : Π⦃a⦄, B a → B' a → Type) (b₀ : B pt) (b₀' : B' pt) (c₀ : C b₀ b₀') :
@psigma_gen (psigma_gen B b₀ ) (λv, Σb', C v.2 b') ⟨b₀', c₀⟩ ≃*
@psigma_gen (psigma_gen B' b₀') (λv, Σb , C b v.2) ⟨b₀ , c₀⟩ :=
!psigma_gen_assoc⁻¹ᵉ* ⬝e* psigma_gen_pequiv_psigma_gen_right (λa, !sigma_comm_equiv) idp ⬝e*
!psigma_gen_assoc
definition ppi_psigma.{u v w} {A : pType.{u}} {B : A → pType.{v}} (C : Πa, B a → Type.{w})
(c : Πa, C a pt) : (Π*(a : A), (psigma_gen (C a) (c a))) ≃*
psigma_gen (λ(f : Π*(a : A), B a), ppi (λa, C a (f a))
(transport (C pt) (respect_pt f)⁻¹ (c pt))) (ppi_const _) :=
proof
calc (Π*(a : A), psigma_gen (C a) (c a))
≃* @psigma_gen (Πᵘ*a, psigma_gen (C a) (c a)) (λf, f pt = pt) idp : pppi.sigma_char
... ≃* @psigma_gen (@psigma_gen (Πᵘ*a, B a) (λf, Πa, C a (f a)) c)
(λv, Σ(p : v.1 pt = pt), v.2 pt =[p] c pt) ⟨idp, idpo⟩ :
by exact psigma_gen_pequiv_psigma_gen (pupi_psigma_gen_pequiv_psigma_gen_pi C c)
(λf, sigma_eq_equiv _ _) idpo
... ≃* @psigma_gen (@psigma_gen (Πᵘ*a, B a) (λf, f pt = pt) idp)
(λv, Σ(g : Πa, C a (v.1 a)), g pt =[v.2] c pt) ⟨c, idpo⟩ :
by apply psigma_gen_swap
... ≃* psigma_gen (λ(f : Π*(a : A), B a), ppi (λa, C a (f a))
(transport (C pt) (respect_pt f)⁻¹ (c pt)))
(ppi_const _) :
by exact (psigma_gen_pequiv_psigma_gen (pppi.sigma_char B)
(λf, !ppi.sigma_char ⬝e sigma_equiv_sigma_right (λg, !pathover_equiv_eq_tr⁻¹ᵉ))
idpo)⁻¹ᵉ*
qed
definition ppmap_psigma {A B : Type*} (C : B → Type) (c : C pt) :
ppmap A (psigma_gen C c) ≃*
psigma_gen (λ(f : ppmap A B), ppi (C ∘ f) (transport C (respect_pt f)⁻¹ c))
(ppi_const _) :=
!pppi_pequiv_ppmap⁻¹ᵉ* ⬝e* !ppi_psigma ⬝e*
sorry
-- psigma_gen_pequiv_psigma_gen (pppi_pequiv_ppmap A B) (λf, begin esimp, exact ppi_equiv_ppi_right (λa, _) _ end) _
definition pfiber_pppi_compose_left {B C : A → Type*} (f : Πa, B a →* C a) :
pfiber (pppi_compose_left f) ≃* Π*(a : A), pfiber (f a) :=
calc
pfiber (pppi_compose_left f) ≃*
psigma_gen (λ(g : Π*(a : A), B a), pmap_compose_ppi f g = ppi_const C)
proof (eq_of_phomotopy (pmap_compose_ppi_ppi_const f)) qed :
by exact !pfiber.sigma_char'
... ≃* psigma_gen (λ(g : Π*(a : A), B a), pmap_compose_ppi f g ~* ppi_const C)
proof (pmap_compose_ppi_ppi_const f) qed :
by exact psigma_gen_pequiv_psigma_gen_right (λa, !ppi_eq_equiv)
!phomotopy_of_eq_of_phomotopy
... ≃* @psigma_gen (Π*(a : A), B a) (λ(g : Π*(a : A), B a), ppi (λa, f a (g a) = pt)
(transport (λb, f pt b = pt) (respect_pt g)⁻¹ (respect_pt (f pt))))
(ppi_const _) :
begin
refine psigma_gen_pequiv_psigma_gen_right
(λg, ppi_equiv_ppi_basepoint (_ ⬝ !eq_transport_Fl⁻¹)) _,
intro g, refine !con_idp ⬝ _, apply whisker_right,
exact ap02 (f pt) !inv_inv⁻¹ ⬝ !ap_inv,
apply eq_of_phomotopy, fapply phomotopy.mk,
intro x, reflexivity,
refine !idp_con ⬝ _, symmetry, refine !ap_id ◾ !idp_con ⬝ _, apply con.right_inv
end
... ≃* Π*(a : A), (psigma_gen (λb, f a b = pt) (respect_pt (f a))) :
by exact (ppi_psigma _ _)⁻¹ᵉ*
... ≃* Π*(a : A), pfiber (f a) : by exact ppi_pequiv_right (λa, !pfiber.sigma_char'⁻¹ᵉ*)
/- TODO: proof the following as a special case of pfiber_pppi_compose_left -/
definition pfiber_ppcompose_left (f : B →* C) :
pfiber (@ppcompose_left A B C f) ≃* ppmap A (pfiber f) :=
calc
pfiber (@ppcompose_left A B C f) ≃*
psigma_gen (λ(g : ppmap A B), f ∘* g = pconst A C)
proof (eq_of_phomotopy (pcompose_pconst f)) qed :
by exact !pfiber.sigma_char'
... ≃* psigma_gen (λ(g : ppmap A B), f ∘* g ~* pconst A C) proof (pcompose_pconst f) qed :
by exact psigma_gen_pequiv_psigma_gen_right (λa, !pmap_eq_equiv)
!phomotopy_of_eq_of_phomotopy
... ≃* psigma_gen (λ(g : ppmap A B), ppi (λa, f (g a) = pt)
(transport (λb, f b = pt) (respect_pt g)⁻¹ (respect_pt f)))
(ppi_const _) :
begin
refine psigma_gen_pequiv_psigma_gen_right
(λg, ppi_equiv_ppi_basepoint (_ ⬝ !eq_transport_Fl⁻¹)) _,
intro g, refine !con_idp ⬝ _, apply whisker_right,
exact ap02 f !inv_inv⁻¹ ⬝ !ap_inv,
apply eq_of_phomotopy, fapply phomotopy.mk,
intro x, reflexivity,
refine !idp_con ⬝ _, symmetry, refine !ap_id ◾ !idp_con ⬝ _, apply con.right_inv
end
... ≃* ppmap A (psigma_gen (λb, f b = pt) (respect_pt f)) :
by exact (ppmap_psigma _ _)⁻¹ᵉ*
... ≃* ppmap A (pfiber f) : by exact ppmap_pequiv_ppmap_right !pfiber.sigma_char'⁻¹ᵉ*
-- definition pppi_ppmap {A C : Type*} {B : A → Type*} :
-- ppmap (/- dependent smash of B -/) C ≃* Π*(a : A), ppmap (B a) C :=
definition ppi_add_point_over {A : Type} (B : A → Type*) :
(Π*a, add_point_over B a) ≃ Πa, B a :=
begin
fapply equiv.MK,
{ intro f a, exact f (some a) },
{ intro f, fconstructor,
intro a, cases a, exact pt, exact f a,
reflexivity },
{ intro f, reflexivity },
{ intro f, cases f with f p, apply eq_of_phomotopy, fapply phomotopy.mk,
{ intro a, cases a, exact p⁻¹, reflexivity },
{ exact con.left_inv p }},
end
definition pppi_add_point_over {A : Type} (B : A → Type*) :
(Π*a, add_point_over B a) ≃* Πᵘ*a, B a :=
pequiv_of_equiv (ppi_add_point_over B) idp
definition ppmap_add_point {A : Type} (B : Type*) :
ppmap A₊ B ≃* A →ᵘ* B :=
pequiv_of_equiv (pmap_equiv_left A B) idp
/- There are some lemma's needed to prove the naturality of the equivalence
Ω (Π*a, B a) ≃* Π*(a : A), Ω (B a) -/
definition ppi_eq_equiv_natural_gen_lem {B C : A → Type} {b₀ : B pt} {c₀ : C pt}
{f : Π(a : A), B a → C a} {f₀ : f pt b₀ = c₀} {k : ppi B b₀} {k' : ppi C c₀}
(p : ppi_functor_right f f₀ k ~* k') :
ap1_gen (f pt) (p pt) f₀ (respect_pt k) = respect_pt k' :=
begin
symmetry,
refine _ ⬝ !con.assoc⁻¹,
exact eq_inv_con_of_con_eq (to_homotopy_pt p),
end
definition ppi_eq_equiv_natural_gen_lem2 {B C : A → Type} {b₀ : B pt} {c₀ : C pt}
{f : Π(a : A), B a → C a} {f₀ : f pt b₀ = c₀} {k l : ppi B b₀}
{k' l' : ppi C c₀} (p : ppi_functor_right f f₀ k ~* k')
(q : ppi_functor_right f f₀ l ~* l') :
ap1_gen (f pt) (p pt) (q pt) (respect_pt k ⬝ (respect_pt l)⁻¹) =
respect_pt k' ⬝ (respect_pt l')⁻¹ :=
(ap1_gen_con (f pt) _ f₀ _ _ _ ⬝ (ppi_eq_equiv_natural_gen_lem p) ◾
(!ap1_gen_inv ⬝ (ppi_eq_equiv_natural_gen_lem q)⁻²))
definition ppi_eq_equiv_natural_gen {B C : A → Type} {b₀ : B pt} {c₀ : C pt}
{f : Π(a : A), B a → C a} {f₀ : f pt b₀ = c₀} {k l : ppi B b₀}
{k' l' : ppi C c₀} (p : ppi_functor_right f f₀ k ~* k')
(q : ppi_functor_right f f₀ l ~* l') :
hsquare (ap1_gen (ppi_functor_right f f₀) (eq_of_phomotopy p) (eq_of_phomotopy q))
(ppi_functor_right (λa, ap1_gen (f a) (p a) (q a))
(ppi_eq_equiv_natural_gen_lem2 p q))
phomotopy_of_eq
phomotopy_of_eq :=
begin
intro r, induction r,
induction f₀,
induction k with k k₀,
induction k₀,
refine idp ⬝ _,
revert l' q, refine phomotopy_rec_idp' _ _,
revert k' p, refine phomotopy_rec_idp' _ _,
reflexivity
end
definition ppi_eq_equiv_natural_gen_refl {B C : A → Type}
{f : Π(a : A), B a → C a} {k : Πa, B a} :
ppi_eq_equiv_natural_gen (phomotopy.refl (ppi_functor_right f idp (ppi.mk k idp)))
(phomotopy.refl (ppi_functor_right f idp (ppi.mk k idp))) idp =
ap phomotopy_of_eq !ap1_gen_idp :=
begin
refine !idp_con ⬝ _,
refine !phomotopy_rec_idp'_refl ⬝ _,
refine ap (transport _ _) !phomotopy_rec_idp'_refl ⬝ _,
refine !tr_diag_eq_tr_tr⁻¹ ⬝ _,
refine !eq_transport_Fl ⬝ _,
refine !ap_inv⁻² ⬝ !inv_inv ⬝ !ap_compose ⬝ ap02 _ _,
exact !ap1_gen_idp_eq⁻¹
end
definition loop_pppi_pequiv [constructor] {A : Type*} (B : A → Type*) :
Ω (Π*a, B a) ≃* Π*(a : A), Ω (B a) :=
pequiv_of_equiv !ppi_eq_equiv idp
definition loop_pppi_pequiv_natural_right {A : Type*} {X Y : A → Type*}
(f : Π (a : A), X a →* Y a) :
psquare (loop_pppi_pequiv X)
(loop_pppi_pequiv Y)
(Ω→ (pppi_compose_left f))
(pppi_compose_left (λ a, Ω→ (f a))) :=
begin
apply ptranspose,
revert Y f, refine fiberwise_pointed_map_rec _ _, intro Y f,
fapply phomotopy.mk,
{ exact ppi_eq_equiv_natural_gen (pmap_compose_ppi_ppi_const (λa, pmap_of_map (f a) pt))
(pmap_compose_ppi_ppi_const (λa, pmap_of_map (f a) pt)) },
{ exact !ppi_eq_equiv_natural_gen_refl ◾ (!idp_con ⬝ !eq_of_phomotopy_refl) }
end
definition loop_pppi_pequiv_natural_left {A B : Type*} {X : A → Type*} (f : B →* A) :
psquare (loop_pppi_pequiv X)
(loop_pppi_pequiv (X ∘ f))
(Ω→ (pppi_compose_right f))
(pppi_compose_right f) :=
begin
exact sorry
end
definition loopn_pppi_pequiv (n : ℕ) {A : Type*} (B : A → Type*) :
Ω[n] (Π*a, B a) ≃* Π*(a : A), Ω[n] (B a) :=
begin
induction n with n IH,
{ reflexivity },
{ refine loop_pequiv_loop IH ⬝e* loop_pppi_pequiv (λa, Ω[n] (B a)) }
end
definition loop_ppmap_pequiv [constructor] (A B : Type*) : Ω (A →** B) ≃* A →** Ω B :=
!loop_pppi_pequiv
definition loop_ppmap_pequiv_natural_right (A : Type*) {X Y : Type*} (f : X →* Y) :
psquare (loop_ppmap_pequiv A X)
(loop_ppmap_pequiv A Y)
(Ω→ (ppcompose_left f))
(ppcompose_left (Ω→ f)) :=
begin
exact loop_pppi_pequiv_natural_right (λa, f)
end
definition loop_ppmap_pequiv_natural_left {A B : Type*} (X : Type*) (f : A →* B) :
psquare (loop_ppmap_pequiv B X)
(loop_ppmap_pequiv A X)
(Ω→ (ppcompose_right f))
(ppcompose_right f) :=
begin
refine Ω⇒ !pppi_compose_right_phomotopy⁻¹* ⬝ph* _ ⬝hp* !pppi_compose_right_phomotopy⁻¹*,
exact loop_pppi_pequiv_natural_left f
end
definition loopn_ppmap_pequiv (n : ℕ) (A B : Type*) : Ω[n] (A →** B) ≃* A →** Ω[n] B :=
!loopn_pppi_pequiv
definition pfunext [constructor] {A : Type*} (B : A → Type*) :
(Π*(a : A), Ω (B a)) ≃* Ω (Π*a, B a) :=
(loop_pppi_pequiv B)⁻¹ᵉ*
definition deloopable_pppi [instance] [constructor] {A : Type*} (B : A → Type*) [Πa, deloopable (B a)] :
deloopable (Π*a, B a) :=
deloopable.mk (Π*a, deloop (B a))
(loop_pppi_pequiv (λa, deloop (B a)) ⬝e* ppi_pequiv_right (λa, deloop_pequiv (B a)))
definition deloopable_ppmap [instance] [constructor] (A B : Type*) [deloopable B] :
deloopable (A →** B) :=
deloopable_pppi (λa, B)
/- below is an alternate proof strategy for the naturality of loop_pppi_pequiv_natural,
where we define loop_pppi_pequiv as composite of pointed equivalences, and proved the
naturality individually. That turned out to be harder.
-/
/- definition loop_pppi_pequiv2 {A : Type*} (B : A → Type*) : Ω (Π*a, B a) ≃* Π*(a : A), Ω (B a) :=
begin
refine loop_pequiv_loop (pppi.sigma_char B) ⬝e* _,
refine !loop_psigma_gen ⬝e* _,
transitivity @psigma_gen (Πᵘ*a, Ω (B a)) (λf, f pt = idp) idp,
exact psigma_gen_pequiv_psigma_gen
(loop_pupi B) (λp, eq_pathover_equiv_Fl p idp idp ⬝e
equiv_eq_closed_right _ (whisker_right _ (ap_eq_apd10 p _)) ⬝e !eq_equiv_eq_symm) idpo,
exact (pppi.sigma_char (Ω ∘ B))⁻¹ᵉ*
end
definition loop_pppi_pequiv_natural2 {A : Type*} {X Y : A → Type*} (f : Π (a : A), X a →* Y a) :
psquare
(Ω→ (pppi_compose_left f))
(pppi_compose_left (λ a, Ω→ (f a)))
(loop_pppi_pequiv2 X)
(loop_pppi_pequiv2 Y) :=
begin
refine ap1_psquare (pppi_sigma_char_natural f) ⬝v* _,
refine !loop_psigma_gen_natural ⬝v* _,
refine _ ⬝v* (pppi_sigma_char_natural (λ a, Ω→ (f a)))⁻¹ᵛ*,
fapply psigma_gen_functor_psquare,
{ apply loop_pupi_natural },
{ intro p q, exact sorry },
{ exact sorry }
end-/
end pointed open pointed
open is_trunc is_conn
namespace is_conn
section
/- todo: reorder arguments and make some implicit -/
variables (A : Type*) (n : ℕ₋₂) (H : is_conn (n.+1) A)
include H
definition is_contr_ppi_match (P : A → Type*) (H2 : Πa, is_trunc (n.+1) (P a))
: is_contr (Π*(a : A), P a) :=
begin
apply is_contr.mk pt,
intro f, induction f with f p,
apply eq_of_phomotopy, fapply phomotopy.mk,
{ apply is_conn.elim n, exact p⁻¹ },
{ krewrite (is_conn.elim_β n), apply con.left_inv }