-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
59 lines (49 loc) · 1.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import hydra
from hydra.core.config_store import ConfigStore
from omegaconf import OmegaConf
from src.config import MODEL_CONFIGS, RunConfig
from src.fmri_dataloader import FMRIWordLevel
from src.LMs_dict_rep import EmbedsDictsBuilder
from src.muse import Muse
from src.ridge_regression import RidgeRegression
from src.rsa import RSA
from src.utils import utils_helper
cs = ConfigStore.instance()
cs.store(name="run_config", node=RunConfig)
for model in MODEL_CONFIGS:
cs.store(group="models", name=f"{model}", node=MODEL_CONFIGS[model])
@hydra.main(version_base=None, config_path="conf", config_name="base_config")
def main(cfg: RunConfig) -> None:
OmegaConf.resolve(cfg)
print(f"Run config:\n{'-'*20}\n{OmegaConf.to_yaml(cfg)}{'-'*20}\n")
utils_helper.enforce_reproducibility(seed=cfg.muse_params.seed)
method = cfg.mapping_method
# return 0
load_fmri_data = FMRIWordLevel(cfg)
load_fmri_data.fmri_data_init()
print("-" * 25 + "convert completed" + "-" * 25)
if cfg.models.model_type == "LM":
lm_emb_dict_builder = EmbedsDictsBuilder(cfg)
lm_emb_dict_builder.build_dictionary()
print("-" * 25 + "build bi-modal dictionaries completed!" + "-" * 25)
lm_emb_dict_builder.process_embeddings(cfg)
print(
"-" * 25
+ "Extract and Decontextualize LMs representation completed!"
+ "-" * 25
)
if method == "procrustes":
procrustes_exp = Muse(cfg, train_eval="train")
procrustes_exp.run()
elif method == "rsa":
rsa_exp = RSA(cfg)
print(rsa_exp.run_rsa())
print("-" * 25 + "RSA Done!" + "-" * 25)
else:
regression = RidgeRegression(cfg)
regression.run_regression()
print("-" * 25 + "Regression Done!" + "-" * 25)
eval_exp = Muse(cfg, train_eval="eval")
eval_exp.run()
if __name__ == "__main__":
main()