-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathdemo_all_methods.py
257 lines (223 loc) · 9.79 KB
/
demo_all_methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# -*- coding: utf-8 -*-
"""
License: MIT
@author: gaj
E-mail: anjing_guo@hnu.edu.cn
"""
import numpy as np
import cv2
import os
from scipy import signal
from methods.Bicubic import Bicubic
from methods.Brovey import Brovey
from methods.PCA import PCA
from methods.IHS import IHS
from methods.SFIM import SFIM
from methods.GS import GS
from methods.Wavelet import Wavelet
from methods.MTF_GLP import MTF_GLP
from methods.MTF_GLP_HPM import MTF_GLP_HPM
from methods.GSA import GSA
from methods.CNMF import CNMF
from methods.GFPCA import GFPCA
from methods.PNN import PNN
from methods.PanNet import PanNet
from metrics import ref_evaluate, no_ref_evaluate
'''loading data'''
original_msi = np.load('./images/GF2_BJ_mss.npy')
original_pan = np.load('./images/GF2_BJ_pan.npy')
'''normalization'''
max_patch, min_patch = np.max(original_msi, axis=(0,1)), np.min(original_msi, axis=(0,1))
original_msi = np.float32(original_msi-min_patch) / (max_patch - min_patch)
max_patch, min_patch = np.max(original_pan, axis=(0,1)), np.min(original_pan, axis=(0,1))
original_pan = np.float32(original_pan-min_patch) / (max_patch - min_patch)
'''generating ms image with gaussian kernel'''
sig = (1/(2*(2.772587)/4**2))**0.5
kernel = np.multiply(cv2.getGaussianKernel(9, sig), cv2.getGaussianKernel(9,sig).T)
new_lrhs = []
for i in range(original_msi.shape[-1]):
temp = signal.convolve2d(original_msi[:,:, i], kernel, boundary='wrap',mode='same')
temp = np.expand_dims(temp, -1)
new_lrhs.append(temp)
new_lrhs = np.concatenate(new_lrhs, axis=-1)
used_ms = new_lrhs[0::4, 0::4, :]
#'''generating ms image with bicubic interpolation'''
#used_ms = cv2.resize(original_msi, (original_msi.shape[1]//4, original_msi.shape[0]//4), interpolation=cv2.INTER_CUBIC)
'''generating pan image with gaussian kernel'''
used_pan = signal.convolve2d(original_pan, kernel, boundary='wrap',mode='same')
used_pan = np.expand_dims(used_pan, -1)
used_pan = used_pan[0::4, 0::4, :]
#'''generating pan image with vitual spectral kernel'''
#spectral_kernel = np.array([[0.1], [0.1], [0.4], [0.4]])
#used_pan = np.dot(original_msi, spectral_kernel)
#'''generating ms image with bicubic interpolation'''
#used_pan = cv2.resize(original_pan, (original_pan.shape[1]//4, original_pan.shape[0]//4), interpolation=cv2.INTER_CUBIC)
#used_pan = np.expand_dims(used_pan, -1)
gt = np.uint8(255*original_msi)
print('ms shape: ', used_ms.shape, 'pan shape: ', used_pan.shape)
'''setting save parameters'''
save_images = True
save_channels = [0, 1, 2]#BGR-NIR for GF2
save_dir='./results/'
if save_images and (not os.path.isdir(save_dir)):
os.makedirs(save_dir)
'''evaluating all methods'''
ref_results={}
ref_results.update({'metrics: ':' PSNR, SSIM, SAM, ERGAS, SCC, Q'})
no_ref_results={}
no_ref_results.update({'metrics: ':' D_lamda, D_s, QNR'})
'''Bicubic method'''
print('evaluating Bicubic method')
fused_image = Bicubic(used_pan[:, :, :], used_ms[:, :, :])
temp_ref_results = ref_evaluate(fused_image, gt)
temp_no_ref_results = no_ref_evaluate(fused_image, np.uint8(used_pan*255), np.uint8(used_ms*255))
ref_results.update({'Bicubic ':temp_ref_results})
no_ref_results.update({'Bicubic ':temp_no_ref_results})
#save
if save_images:
cv2.imwrite(save_dir+'Bicubic.tiff', fused_image[:, :, save_channels])
'''Brovey method'''
print('evaluating Brovey method')
fused_image = Brovey(used_pan[:, :, :], used_ms[:, :, :])
temp_ref_results = ref_evaluate(fused_image, gt)
temp_no_ref_results = no_ref_evaluate(fused_image, np.uint8(used_pan*255), np.uint8(used_ms*255))
ref_results.update({'Brovey ':temp_ref_results})
no_ref_results.update({'Brovey ':temp_no_ref_results})
#save
if save_images:
cv2.imwrite(save_dir+'Brovey.tiff', fused_image[:, :, save_channels])
'''PCA method'''
print('evaluating PCA method')
fused_image = PCA(used_pan[:, :, :], used_ms[:, :, :])
temp_ref_results = ref_evaluate(fused_image, gt)
temp_no_ref_results = no_ref_evaluate(fused_image, np.uint8(used_pan*255), np.uint8(used_ms*255))
ref_results.update({'PCA ':temp_ref_results})
no_ref_results.update({'PCA ':temp_no_ref_results})
#save
if save_images:
cv2.imwrite(save_dir+'PCA.tiff', fused_image[:, :, save_channels])
'''IHS method'''
print('evaluating IHS method')
fused_image = IHS(used_pan[:, :, :], used_ms[:, :, :])
temp_ref_results = ref_evaluate(fused_image, gt)
temp_no_ref_results = no_ref_evaluate(fused_image, np.uint8(used_pan*255), np.uint8(used_ms*255))
ref_results.update({'IHS ':temp_ref_results})
no_ref_results.update({'IHS ':temp_no_ref_results})
#save
if save_images:
cv2.imwrite(save_dir+'IHS.tiff', fused_image[:, :, save_channels])
'''SFIM method'''
print('evaluating SFIM method')
fused_image = SFIM(used_pan[:, :, :], used_ms[:, :, :])
temp_ref_results = ref_evaluate(fused_image, gt)
temp_no_ref_results = no_ref_evaluate(fused_image, np.uint8(used_pan*255), np.uint8(used_ms*255))
ref_results.update({'SFIM ':temp_ref_results})
no_ref_results.update({'SFIM ':temp_no_ref_results})
#save
if save_images:
cv2.imwrite(save_dir+'SFIM.tiff', fused_image[:, :, save_channels])
'''GS method'''
print('evaluating GS method')
fused_image = GS(used_pan[:, :, :], used_ms[:, :, :])
temp_ref_results = ref_evaluate(fused_image, gt)
temp_no_ref_results = no_ref_evaluate(fused_image, np.uint8(used_pan*255), np.uint8(used_ms*255))
ref_results.update({'GS ':temp_ref_results})
no_ref_results.update({'GS ':temp_no_ref_results})
#save
if save_images:
cv2.imwrite(save_dir+'GS.tiff', fused_image[:, :, save_channels])
'''Wavelet method'''
print('evaluating Wavelet method')
fused_image = Wavelet(used_pan[:, :, :], used_ms[:, :, :])
temp_ref_results = ref_evaluate(fused_image, gt)
temp_no_ref_results = no_ref_evaluate(fused_image, np.uint8(used_pan*255), np.uint8(used_ms*255))
ref_results.update({'Wavelet ':temp_ref_results})
no_ref_results.update({'Wavelet ':temp_no_ref_results})
#save
if save_images:
cv2.imwrite(save_dir+'Wavelet.tiff', fused_image[:, :, save_channels])
'''MTF_GLP method'''
print('evaluating MTF_GLP method')
fused_image = MTF_GLP(used_pan[:, :, :], used_ms[:, :, :])
temp_ref_results = ref_evaluate(fused_image, gt)
temp_no_ref_results = no_ref_evaluate(fused_image, np.uint8(used_pan*255), np.uint8(used_ms*255))
ref_results.update({'MTF_GLP ':temp_ref_results})
no_ref_results.update({'MTF_GLP ':temp_no_ref_results})
#save
if save_images:
cv2.imwrite(save_dir+'MTF_GLP.tiff', fused_image[:, :, save_channels])
'''MTF_GLP_HPM method'''
print('evaluating MTF_GLP_HPM method')
fused_image = MTF_GLP_HPM(used_pan[:, :, :], used_ms[:, :, :])
temp_ref_results = ref_evaluate(fused_image, gt)
temp_no_ref_results = no_ref_evaluate(fused_image, np.uint8(used_pan*255), np.uint8(used_ms*255))
ref_results.update({'MTF_GLP_HPM':temp_ref_results})
no_ref_results.update({'MTF_GLP_HPM':temp_no_ref_results})
#save
if save_images:
cv2.imwrite(save_dir+'MTF_GLP_HPM.tiff', fused_image[:, :, save_channels])
'''GSA method'''
print('evaluating GSA method')
fused_image = GSA(used_pan[:, :, :], used_ms[:, :, :])
temp_ref_results = ref_evaluate(fused_image, gt)
temp_no_ref_results = no_ref_evaluate(fused_image, np.uint8(used_pan*255), np.uint8(used_ms*255))
ref_results.update({'GSA ':temp_ref_results})
no_ref_results.update({'GSA ':temp_no_ref_results})
#save
if save_images:
cv2.imwrite(save_dir+'GSA.tiff', fused_image[:, :, save_channels])
'''CNMF method'''
print('evaluating CNMF method')
fused_image = CNMF(used_pan[:, :, :], used_ms[:, :, :])
temp_ref_results = ref_evaluate(fused_image, gt)
temp_no_ref_results = no_ref_evaluate(fused_image, np.uint8(used_pan*255), np.uint8(used_ms*255))
ref_results.update({'CNMF ':temp_ref_results})
no_ref_results.update({'CNMF ':temp_no_ref_results})
#save
if save_images:
cv2.imwrite(save_dir+'CNMF.tiff', fused_image[:, :, save_channels])
'''GFPCA method'''
print('evaluating GFPCA method')
fused_image = GFPCA(used_pan[:, :, :], used_ms[:, :, :])
temp_ref_results = ref_evaluate(fused_image, gt)
temp_no_ref_results = no_ref_evaluate(fused_image, np.uint8(used_pan*255), np.uint8(used_ms*255))
ref_results.update({'GFPCA ':temp_ref_results})
no_ref_results.update({'GFPCA ':temp_no_ref_results})
#save
if save_images:
cv2.imwrite(save_dir+'GFPCA.tiff', fused_image[:, :, save_channels])
'''PNN method'''
print('evaluating PNN method')
fused_image = PNN(used_pan[:, :, :], used_ms[:, :, :])
temp_ref_results = ref_evaluate(fused_image, gt)
temp_no_ref_results = no_ref_evaluate(fused_image, np.uint8(used_pan*255), np.uint8(used_ms*255))
ref_results.update({'PNN ':temp_ref_results})
no_ref_results.update({'PNN ':temp_no_ref_results})
#save
if save_images:
cv2.imwrite(save_dir+'PNN.tiff', fused_image[:, :, save_channels])
'''PanNet method'''
print('evaluating PanNet method')
fused_image = PanNet(used_pan[:, :, :], used_ms[:, :, :])
temp_ref_results = ref_evaluate(fused_image, gt)
temp_no_ref_results = no_ref_evaluate(fused_image, np.uint8(used_pan*255), np.uint8(used_ms*255))
ref_results.update({'PanNet ':temp_ref_results})
no_ref_results.update({'PanNet ':temp_no_ref_results})
#save
if save_images:
cv2.imwrite(save_dir+'PanNet.tiff', fused_image[:, :, save_channels])
''''print result'''
print('################## reference comparision #######################')
for index, i in enumerate(ref_results):
if index == 0:
print(i, ref_results[i])
else:
print(i, [round(j, 4) for j in ref_results[i]])
print('################## reference comparision #######################')
print('################## no reference comparision ####################')
for index, i in enumerate(no_ref_results):
if index == 0:
print(i, no_ref_results[i])
else:
print(i, [round(j, 4) for j in no_ref_results[i]])
print('################## no reference comparision ####################')