-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathline_search.py
108 lines (82 loc) · 3.78 KB
/
line_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from manim import *
import numpy as np
from scipy.optimize import line_search
import json
import sympy
class ThreeDCanvas(ThreeDScene):
def construct(self):
axes = ThreeDAxes()
model_json = json.load(open('./src/line_search/model_ls.json'))
json_vars = ' '.join(model_json['vars'])
json_constraints = model_json['constraints']
initial_point = model_json['initial_point']
try:
x_range = model_json['x_range']
y_range = model_json['y_range']
except:
raise Exception("You must specify the range of coordinates, i.e x_range = [-4,4], y_range = [0,10]")
try:
camera_phi = model_json['camera_phi']
camera_theta = model_json['camera_theta']
except:
camera_phi = 45
camera_theta = -120
# must be two variables only
x, y = sympy.symbols(json_vars)
vars = (x, y)
obj_sym = sympy.parse_expr(model_json['func'])
obj_lambda = sympy.Lambda(vars, obj_sym)
constraints = [sympy.Lambda(vars, i) for i in json_constraints]
fp = lambda x: obj_lambda(x[0], x[1])
f = lambda u,v: np.array([u,v, fp([u,v])])
graph = Surface(
f, v_range=x_range, u_range=y_range,
checkerboard_colors=[RED_D, RED_E], resolution=(15, 32), fill_opacity=0.5
)
self.set_camera_orientation(phi=camera_phi * DEGREES, theta= camera_theta * DEGREES)
self.begin_ambient_camera_rotation(rate=0.2)
self.play(Rotate(graph, 0*DEGREES))
self.play(Rotate(axes, 0*DEGREES))
gradient = [ sympy.Lambda( vars, sympy.diff(obj_sym, var) ) for var in vars]
gf = lambda x: np.array([ i(x[0],x[1]) for i in gradient ])
# gradient = sympy.derive_by_array(fp, vars)
print(gf([1,2]))
print(obj_sym)
start_point = np.array(initial_point)
search_gradient = -1*gf(start_point)/10
for c in constraints:
print('testing if', c, 'holds at', initial_point, c(initial_point[0], initial_point[1]))
assert all([constraint(initial_point[0], initial_point[1]) for constraint in constraints]), "Invalid initial point, specify one that meets all the constraints"
best = start_point
points = [best]
# main loop where we find a descent direction p=gradient(point), and then do
# line search to find the optimum alpha in order to descend alpha*p
# loop breaks when one of the constraints ceases to be true, when there's no optimum and the
# line_search throws an stalling exception, and when the difference between x_k and x_k+1 is <= threshold
threshold = 0.001
while True:
try:
res = line_search(fp, gf, start_point, search_gradient)
start_point = start_point + res[0]*search_gradient
search_gradient = -1*gf(start_point)/2
if not all([cons(start_point[0], start_point[1]) for cons in constraints]):
break # not all constraints were TRUE
if fp(best) - fp(start_point) < threshold:
break # reached the threshold value, break the infinite loop
print(start_point)
best = start_point
points.append(best)
except:
break
print('The best result was', best, 'with f(x,y)=', fp(best))
points = [ np.array([i[0], i[1], fp(i)]) for i in points] # in ndarray form
itt_points = [Dot3D(axes.coords_to_point(*i), color=BLUE, radius=0.07) for i in points[1:-1]] # the middle steps points
ppoints = [Dot3D(axes.coords_to_point(*points[0]), color=RED)]
ppoints.extend(itt_points)
opt_coords = axes.coords_to_point(*points[-1])
ppoints.append(Dot3D(opt_coords, color=GREEN))
txt = '(' + str( round(points[-1][0],2) ) + ',' + str( round(points[-1][1],2) ) + ',' + str( round(points[-1][2],2) ) + ')'
dot_txt = Text(txt, font_size=20, color=PURE_GREEN)
for p in ppoints:
self.play(Rotate(p, 0*DEGREES))
self.add(graph, axes)