-
Notifications
You must be signed in to change notification settings - Fork 10
/
03_xor_profit_problem.cpp
120 lines (91 loc) · 3.21 KB
/
03_xor_profit_problem.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
/*
Problem Name - XOR Profit Problem
We are given two coins of value x and y. We have to find the maximum of value of a XOR b
where x <= a <= b <= y.
Input Format: We are given two integers x and y
Constraints: l <= r <= 1000
Output Format: Print the maximum value of a XOR b
Sample Input: 5
6
Sample Output: 3
Explanation: If a and b are taken to be 5. Then a xor b = 0
If a and b are taken to be 6. Then a xor b = 0
If a is 5 and b is 6. Then a xor b is 3.
*/
#include <iostream>
using namespace std;
/*
function to find maximum xor value between range x & y
Approach 1: A brute force solution is to generate all pairs. find their XOR values and finally return
the maximum XOR value
*/
int max_xor_value(int x, int y)
{
int result = 0;
for (int i = x; i <= y; i++)
{
for (int j = x + 1; j <= y; j++)
{
result = max(i ^ j, result);
}
}
return result;
}
// Approach 2: A efficient solution is to consider pattern of binary values from L to R.
int max_xor_value_optimised(int l, int r)
{
// find xor of l & r (it will be of form 1xxxx... ,where x can be 0 or 1)
int num = l^r;
// find the position of msb(most significant bit) of l^r (i.e 1xxxx...)
int pos = 0;
while (num)
{
num = num >> 1;
pos++;
}
// Now, max XOR val will of form 11111... i.e (2^pos -1)
int result = (1<<pos) - 1;
return result;
/* Eg: when num = 1xxx (x can be 0 or 1)
pos = 4
pos
| pos
max number = 1111 = 15 i.e (2 - 1)
*/
}
// function to drive code
int main()
{
int x, y;
cout << "Enter Coin values: ";
cin >> x >> y;
cout << "Max XOR Value: ";
// cout << max_xor_value(x,y); // Approach 1 (Brute Force)
cout << max_xor_value_optimised(x, y); // Approach 2 (considering pattern of binary values)
cout << endl;
return 0;
}
/*
OUTPUT:
Case 1:
Enter Coin values: 5 6
Max XOR Value: 3
Case 2:
Enter Coin values: 5 10
Max XOR Value: 15
APPROACH:
- Brute Force Approach
A simple solution is to generate all pairs, find their XOR values and finally return the
maximum XOR value.
- Optimised Approach
An efficient solution is to consider pattern of binary values from L to R.
We can see that first bit from L to R either changes from 0 to 1 or it stays 1
i.e. if we take the XOR of any two numbers for maximum value their first bit will be fixed which
will be same as first bit of XOR of L and R itself.
After observing the technique to get first bit, we can see that if we XOR L and R,
the most significant bit of this XOR will tell us the maximum value we can achieve
i.e. let XOR of L and R is 1xxx where x can be 0 or 1 then maximum XOR value we can get is 1111
because from L to R we have all possible combination of xxx and it is always possible to choose
these bits in such a way from two numbers such that their XOR becomes all 1.
Ref - https://www.youtube.com/watch?v=wFuMDWF3ewc
*/