-
Notifications
You must be signed in to change notification settings - Fork 1
/
9.1 Naive Bayes.html
850 lines (761 loc) · 41.1 KB
/
9.1 Naive Bayes.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />
<title>Naive Bayes Algorithm — Data Science Notes</title>
<link href="_static/css/theme.css" rel="stylesheet">
<link href="_static/css/index.ff1ffe594081f20da1ef19478df9384b.css" rel="stylesheet">
<link rel="stylesheet"
href="_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/sphinx-book-theme.css?digest=c3fdc42140077d1ad13ad2f1588a4309" />
<link rel="stylesheet" type="text/css" href="_static/togglebutton.css" />
<link rel="stylesheet" type="text/css" href="_static/copybutton.css" />
<link rel="stylesheet" type="text/css" href="_static/mystnb.css" />
<link rel="stylesheet" type="text/css" href="_static/sphinx-thebe.css" />
<link rel="stylesheet" type="text/css" href="_static/panels-main.c949a650a448cc0ae9fd3441c0e17fb0.css" />
<link rel="stylesheet" type="text/css" href="_static/panels-variables.06eb56fa6e07937060861dad626602ad.css" />
<link rel="preload" as="script" href="_static/js/index.be7d3bbb2ef33a8344ce.js">
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/togglebutton.js"></script>
<script src="_static/clipboard.min.js"></script>
<script src="_static/copybutton.js"></script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown, .tag_hide_input div.cell_input, .tag_hide-input div.cell_input, .tag_hide_output div.cell_output, .tag_hide-output div.cell_output, .tag_hide_cell.cell, .tag_hide-cell.cell';</script>
<script src="_static/sphinx-book-theme.12a9622fbb08dcb3a2a40b2c02b83a57.js"></script>
<script defer="defer" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<script>window.MathJax = {"options": {"processHtmlClass": "tex2jax_process|mathjax_process|math|output_area"}}</script>
<script async="async" src="https://unpkg.com/thebe@0.5.1/lib/index.js"></script>
<script>
const thebe_selector = ".thebe"
const thebe_selector_input = "pre"
const thebe_selector_output = ".output"
</script>
<script async="async" src="_static/sphinx-thebe.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Multinomial Naive Bayes" href="9.2%20Multinomial%20Naive%20Bayes.html" />
<link rel="prev" title="Ensemble Learning" href="7.%20Ensemble.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="None">
<!-- Google Analytics -->
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<div class="container-fluid" id="banner"></div>
<div class="container-xl">
<div class="row">
<div class="col-12 col-md-3 bd-sidebar site-navigation show" id="site-navigation">
<div class="navbar-brand-box">
<a class="navbar-brand text-wrap" href="index.html">
<!-- `logo` is deprecated in Sphinx 4.0, so remove this when we stop supporting 3 -->
<img src="_static/logo.svg" class="logo" alt="logo">
<h1 class="site-logo" id="site-title">Data Science Notes</h1>
</a>
</div><form class="bd-search d-flex align-items-center" action="search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search this book..." aria-label="Search this book..." autocomplete="off" >
</form><nav class="bd-links" id="bd-docs-nav" aria-label="Main">
<div class="bd-toc-item active">
<ul class="nav bd-sidenav">
<li class="toctree-l1">
<a class="reference internal" href="intro.html">
Introduction
</a>
</li>
</ul>
<p aria-level="2" class="caption" role="heading">
<span class="caption-text">
Machine Learning
</span>
</p>
<ul class="current nav bd-sidenav">
<li class="toctree-l1">
<a class="reference internal" href="1.1%20Introduction%20to%20Numpy.html">
Numpy
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="1.2%20Introduction%20to%20Matplotlib.html">
Matplotlib: Visualization with Python
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="1.3%20Introduction%20to%20Pandas.html">
Pandas
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="2.%20KNN.html">
K - Nearest Neighbour
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="3.1%20Linear%20Regression.html">
Linear Regression
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="3.2%20Multi-Variate%20Regression.html">
Multi Variable Regression
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="3.3%20MLE%20-%20Linear%20Regression.html">
MLE - Linear Regression
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="3.4%20GLM%20-%20Linear%20Regression.html">
Generalised linear model-Linear Regression
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="4.%20Gradient%20Descent.html">
Gradient Descent
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="5.1%20%20Logistic%20Regression.html">
Logistic Regression
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="5.2%20Maximum%20Likelihood%20Estimation%20and%20Implementation.html">
Logistic Regression MLE & Implementation
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="6.%20Decision%20Trees.html">
Decision Tree Algorithm
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="7.%20Ensemble.html">
Ensemble Learning
</a>
</li>
<li class="toctree-l1 current active">
<a class="current reference internal" href="#">
Naive Bayes Algorithm
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="9.2%20Multinomial%20Naive%20Bayes.html">
Multinomial Naive Bayes
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="11.%20Imbalanced%20Dataset.html">
Imbalanced Dataset
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="12.%20PCA.html">
Principal Component Analysis
</a>
</li>
</ul>
<p aria-level="2" class="caption" role="heading">
<span class="caption-text">
About
</span>
</p>
<ul class="nav bd-sidenav">
<li class="toctree-l1">
<a class="reference internal" href="About%20the%20Authors.html">
Acknowledgement
</a>
</li>
</ul>
</div>
</nav> <!-- To handle the deprecated key -->
<div class="navbar_extra_footer">
Powered by <a href="https://jupyterbook.org">Jupyter Book</a>
</div>
</div>
<main class="col py-md-3 pl-md-4 bd-content overflow-auto" role="main">
<div class="topbar container-xl fixed-top">
<div class="topbar-contents row">
<div class="col-12 col-md-3 bd-topbar-whitespace site-navigation show"></div>
<div class="col pl-md-4 topbar-main">
<button id="navbar-toggler" class="navbar-toggler ml-0" type="button" data-toggle="collapse"
data-toggle="tooltip" data-placement="bottom" data-target=".site-navigation" aria-controls="navbar-menu"
aria-expanded="true" aria-label="Toggle navigation" aria-controls="site-navigation"
title="Toggle navigation" data-toggle="tooltip" data-placement="left">
<i class="fas fa-bars"></i>
<i class="fas fa-arrow-left"></i>
<i class="fas fa-arrow-up"></i>
</button>
<div class="dropdown-buttons-trigger">
<button id="dropdown-buttons-trigger" class="btn btn-secondary topbarbtn" aria-label="Download this page"><i
class="fas fa-download"></i></button>
<div class="dropdown-buttons">
<!-- ipynb file if we had a myst markdown file -->
<!-- Download raw file -->
<a class="dropdown-buttons" href="_sources/9.1 Naive Bayes.ipynb"><button type="button"
class="btn btn-secondary topbarbtn" title="Download source file" data-toggle="tooltip"
data-placement="left">.ipynb</button></a>
<!-- Download PDF via print -->
<button type="button" id="download-print" class="btn btn-secondary topbarbtn" title="Print to PDF"
onClick="window.print()" data-toggle="tooltip" data-placement="left">.pdf</button>
</div>
</div>
<!-- Source interaction buttons -->
<!-- Full screen (wrap in <a> to have style consistency -->
<a class="full-screen-button"><button type="button" class="btn btn-secondary topbarbtn" data-toggle="tooltip"
data-placement="bottom" onclick="toggleFullScreen()" aria-label="Fullscreen mode"
title="Fullscreen mode"><i
class="fas fa-expand"></i></button></a>
<!-- Launch buttons -->
<div class="dropdown-buttons-trigger">
<button id="dropdown-buttons-trigger" class="btn btn-secondary topbarbtn"
aria-label="Launch interactive content"><i class="fas fa-rocket"></i></button>
<div class="dropdown-buttons">
<a class="binder-button" href="https://mybinder.org/v2/gh/executablebooks/jupyter-book/master?urlpath=tree/9.1 Naive Bayes.ipynb"><button type="button"
class="btn btn-secondary topbarbtn" title="Launch Binder" data-toggle="tooltip"
data-placement="left"><img class="binder-button-logo"
src="_static/images/logo_binder.svg"
alt="Interact on binder">Binder</button></a>
</div>
</div>
</div>
<!-- Table of contents -->
<div class="d-none d-md-block col-md-2 bd-toc show">
<div class="tocsection onthispage pt-5 pb-3">
<i class="fas fa-list"></i> Contents
</div>
<nav id="bd-toc-nav" aria-label="Page">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry">
<a class="reference internal nav-link" href="#introduction">
Introduction
</a>
</li>
<li class="toc-h2 nav-item toc-entry">
<a class="reference internal nav-link" href="#bayes-theorem">
Bayes’ Theorem
</a>
</li>
<li class="toc-h2 nav-item toc-entry">
<a class="reference internal nav-link" href="#working">
Working
</a>
<ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry">
<a class="reference internal nav-link" href="#example">
Example
</a>
<ul class="nav section-nav flex-column">
<li class="toc-h4 nav-item toc-entry">
<a class="reference internal nav-link" href="#appyling-naive-bayes">
Appyling Naive Bayes
</a>
</li>
</ul>
</li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry">
<a class="reference internal nav-link" href="#implementation">
Implementation
</a>
</li>
<li class="toc-h2 nav-item toc-entry">
<a class="reference internal nav-link" href="#advantages-and-disadvantages">
Advantages And Disadvantages
</a>
<ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry">
<a class="reference internal nav-link" href="#advantages">
Advantages
</a>
</li>
<li class="toc-h3 nav-item toc-entry">
<a class="reference internal nav-link" href="#disadvantages">
Disadvantages
</a>
</li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry">
<a class="reference internal nav-link" href="#further-reading">
Further Reading
</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div id="main-content" class="row">
<div class="col-12 col-md-9 pl-md-3 pr-md-0">
<div>
<section class="tex2jax_ignore mathjax_ignore" id="naive-bayes-algorithm">
<h1>Naive Bayes Algorithm<a class="headerlink" href="#naive-bayes-algorithm" title="Permalink to this headline">¶</a></h1>
<section id="introduction">
<h2>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline">¶</a></h2>
<p>It is a classification technique based on Bayes’ Theorem with an assumption of independence among predictors. In simple terms, a Naive Bayes classifier assumes that the presence of a particular feature in a class is unrelated to the presence of any other feature.</p>
<p>For example, a fruit may be considered to be an apple if it is red, round, and about 3 inches in diameter. Even if these features depend on each other or upon the existence of the other features, all of these properties independently contribute to the probability that this fruit is an apple and that is why it is known as ‘Naive’.</p>
<p>Naive Bayes model is easy to build and particularly useful for very large data sets. Along with simplicity, Naive Bayes is known to outperform even highly sophisticated classification methods.</p>
</section>
<section id="bayes-theorem">
<h2>Bayes’ Theorem<a class="headerlink" href="#bayes-theorem" title="Permalink to this headline">¶</a></h2>
<p>Naive Bayes Algorithm uses bayes’ theorem so let us understand this theorem first.<br />
In statistics and probability theory, the Bayes’ theorem (also known as the Bayes’ rule) is a mathematical formula used to determine the conditional probability of events. Essentially, the Bayes’ theorem describes the probability of an event based on prior knowledge of the conditions that might be relevant to the event.</p>
<p><img alt="" src="_images/nb1.png" /></p>
<hr class="docutils" />
<p><strong>Where:</strong></p>
<blockquote>
<div><p>P(A|B) – the probability of event A occurring, given event B has occurred<br />
P(B|A) – the probability of event B occurring, given event A has occurred<br />
P(A) – the probability of event A<br />
P(B) – the probability of event B</p>
</div></blockquote>
</section>
<hr class="docutils" />
<section id="working">
<h2>Working<a class="headerlink" href="#working" title="Permalink to this headline">¶</a></h2>
<p>We use Bayes’s theorem to calculate the probability of given set of input to belong to a given class we have also done similar things earlier.let us now write the bayes theorem in term of class and input which will help us to understand things in a better way,also let us see some technical names given to these probabilities.</p>
<p><img alt="image-2.png" src="_images/nb2.png" /></p>
<blockquote>
<div><p><strong>Above,</strong></p>
</div></blockquote>
<blockquote>
<div><blockquote>
<div><ul class="simple">
<li><p>P(c|x) is the <strong>posterior probability</strong> of <strong>class</strong> (c, target) given predictor (x, attributes).</p></li>
<li><p>P(c) is the prior probability of class.</p></li>
<li><p>P(x|c) is the likelihood which is the probability of predictor given class.</p></li>
<li><p>P(x) is the prior probability of predictor.</p></li>
</ul>
</div></blockquote>
</div></blockquote>
<p>Now one of the basic assumptions of Naive bayes’s algorithm is Independence of features (No value of attribute is dependent on other) we can use to write the term <span class="math notranslate nohighlight">\(P(X|c)\)</span> as the product of Indivisual features i.e.</p>
<blockquote>
<div><p><span class="math notranslate nohighlight">\(X=(X_1,X_2,X_3....X_n)\)</span></p>
</div></blockquote>
<blockquote>
<div><p><span class="math notranslate nohighlight">\(P(X|c)=P(X_1|c)\times P(X_2|c)\times ......P(X_n|c)\)</span></p>
</div></blockquote>
<p><strong>Therfore</strong></p>
<blockquote>
<div><p><span class="math notranslate nohighlight">\(P(c|X)=\frac{\large{P(X_1|c)\times P(X_2|c)\times......P(X_n|c)\times p(c)}}{\large{P(X)}}\)</span></p>
</div></blockquote>
<section id="example">
<h3>Example<a class="headerlink" href="#example" title="Permalink to this headline">¶</a></h3>
<p>Let us take an example with dummy dataset to understand the algorithm in a better way below mentioned data is just for understanding the concept.</p>
<p>let’s say we have data on 1000 pieces of fruit. The fruit being a Banana, Orange or some other fruit and imagine we know 3 features of each fruit, whether it’s long or not, sweet or not and yellow or not, as displayed in the table below.</p>
<p><img alt="image-3.png" src="_images/nb3.png" /></p>
<hr class="docutils" />
<p><strong>So from the table we can find out that-</strong></p>
<ul class="simple">
<li><p>50% of the fruits are bananas</p></li>
<li><p>30% are oranges</p></li>
<li><p>20% are other fruits</p></li>
</ul>
<p><strong>Based on our training set we can also say the following:</strong></p>
<ul class="simple">
<li><p>From 500 bananas 400 (0.8) are Long,</p></li>
<li><p>350 (0.7) are Sweet and 450 (0.9) are Yellow</p></li>
<li><p>Out of 300 oranges, 0 are Long, 150 (0.5) are Sweet and 300 (1) are Yellow</p></li>
<li><p>From the remaining 200 fruits, 100 (0.5) are Long, 150 (0.75) are Sweet and 50 (0.25) are Yellow</p></li>
</ul>
<hr class="docutils" />
<section id="appyling-naive-bayes">
<h4>Appyling Naive Bayes<a class="headerlink" href="#appyling-naive-bayes" title="Permalink to this headline">¶</a></h4>
<p>Which should provide enough evidence to predict the class of another fruit as it’s introduced.</p>
<p>So let’s say we’re given the features of a piece of fruit and we need to predict the class. If we’re told that the additional fruit is Long, Sweet and Yellow, we can classify it using the following formula and subbing in the values for each outcome, whether it’s a Banana, an Orange or Other Fruit. The one with the highest probability (score) being the winner.</p>
<p>Now let us calculate the probabilities for every class and see the results for <span class="math notranslate nohighlight">\(X=(Long, Sweet, Yellow)\)</span></p>
<p><strong>For Banana</strong></p>
<blockquote>
<div><p><span class="math notranslate nohighlight">\(P(\dfrac{Banana}{Long,Sweet,Yellow})=\dfrac{p(\dfrac{Long}{Banana})\times P(\dfrac{Sweet}{Banana})\times P(\dfrac{Yellow}{Banana})\times P(Banana)}{P(Long)P(Sweet)P(Banana)}\)</span></p>
</div></blockquote>
<blockquote>
<div><p><span class="math notranslate nohighlight">\(P(\dfrac{Banana}{Long,Sweet,Yellow})=\dfrac{(0.8)\times (0.7)\times (0.9)\times (0.5)}{0.25\times0.33\times0.41}\)</span></p>
</div></blockquote>
<blockquote>
<div><p><span class="math notranslate nohighlight">\(P(\dfrac{Banana}{Long,Sweet,Yellow})=0.252\)</span></p>
</div></blockquote>
<p><strong>For Orange</strong></p>
<blockquote>
<div><p><span class="math notranslate nohighlight">\(P(\dfrac{Orange}{Long,Sweet,Yellow})=0\)</span></p>
</div></blockquote>
<p><strong>For Other</strong></p>
<blockquote>
<div><p><span class="math notranslate nohighlight">\(P(\dfrac{Banana}{Long,Sweet,Yellow})=0.01875\)</span></p>
</div></blockquote>
<hr class="docutils" />
<p><strong>In this case, based on the higher score ( 0.252 for banana ) we can assume this Long, Sweet and Yellow fruit is in fact, a Banana</strong>.</p>
</section>
</section>
</section>
<hr class="docutils" />
<section id="implementation">
<h2>Implementation<a class="headerlink" href="#implementation" title="Permalink to this headline">¶</a></h2>
<p><strong>Naive bayes is generally used for classification task</strong> and goes very well with categorical data as value of the feature does not hold any importance in this but the probability of it does. Here we will see the python implementation of the Naive bayes we will use a data set which will have categorical features.</p>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="c1"># importing libraries</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
</pre></div>
</div>
</div>
</div>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="c1"># Dataset</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s2">"./Data/Naivebayes/mushrooms.csv"</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="c1"># Visualize the dataset</span>
<span class="n">data</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>
</pre></div>
</div>
</div>
<div class="cell_output docutils container">
<div class="output text_html"><div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>class</th>
<th>cap-shape</th>
<th>cap-surface</th>
<th>cap-color</th>
<th>bruises</th>
<th>odor</th>
<th>gill-attachment</th>
<th>gill-spacing</th>
<th>gill-size</th>
<th>gill-color</th>
<th>...</th>
<th>stalk-surface-below-ring</th>
<th>stalk-color-above-ring</th>
<th>stalk-color-below-ring</th>
<th>veil-type</th>
<th>veil-color</th>
<th>ring-number</th>
<th>ring-type</th>
<th>spore-print-color</th>
<th>population</th>
<th>habitat</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>p</td>
<td>x</td>
<td>s</td>
<td>n</td>
<td>t</td>
<td>p</td>
<td>f</td>
<td>c</td>
<td>n</td>
<td>k</td>
<td>...</td>
<td>s</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>o</td>
<td>p</td>
<td>k</td>
<td>s</td>
<td>u</td>
</tr>
<tr>
<th>1</th>
<td>e</td>
<td>x</td>
<td>s</td>
<td>y</td>
<td>t</td>
<td>a</td>
<td>f</td>
<td>c</td>
<td>b</td>
<td>k</td>
<td>...</td>
<td>s</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>o</td>
<td>p</td>
<td>n</td>
<td>n</td>
<td>g</td>
</tr>
<tr>
<th>2</th>
<td>e</td>
<td>b</td>
<td>s</td>
<td>w</td>
<td>t</td>
<td>l</td>
<td>f</td>
<td>c</td>
<td>b</td>
<td>n</td>
<td>...</td>
<td>s</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>o</td>
<td>p</td>
<td>n</td>
<td>n</td>
<td>m</td>
</tr>
<tr>
<th>3</th>
<td>p</td>
<td>x</td>
<td>y</td>
<td>w</td>
<td>t</td>
<td>p</td>
<td>f</td>
<td>c</td>
<td>n</td>
<td>n</td>
<td>...</td>
<td>s</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>o</td>
<td>p</td>
<td>k</td>
<td>s</td>
<td>u</td>
</tr>
<tr>
<th>4</th>
<td>e</td>
<td>x</td>
<td>s</td>
<td>g</td>
<td>f</td>
<td>n</td>
<td>f</td>
<td>w</td>
<td>b</td>
<td>k</td>
<td>...</td>
<td>s</td>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>o</td>
<td>e</td>
<td>n</td>
<td>a</td>
<td>g</td>
</tr>
</tbody>
</table>
<p>5 rows × 23 columns</p>
</div></div></div>
</div>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="c1"># Seprating features(X) and label(y)</span>
<span class="n">X</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">drop</span><span class="p">([</span><span class="s2">"class"</span><span class="p">],</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">values</span><span class="p">,</span> <span class="n">data</span><span class="p">[</span><span class="s2">"class"</span><span class="p">]</span><span class="o">.</span><span class="n">values</span>
<span class="n">X</span><span class="o">.</span><span class="n">shape</span><span class="p">,</span> <span class="n">y</span><span class="o">.</span><span class="n">shape</span>
</pre></div>
</div>
</div>
<div class="cell_output docutils container">
<div class="output text_plain highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>((8124, 22), (8124,))
</pre></div>
</div>
</div>
</div>
<p><strong>Now let’s implement our Naive Bayes class</strong></p>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">NaiveBayes</span><span class="p">:</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">pass</span>
<span class="k">def</span> <span class="nf">fit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">X</span> <span class="o">=</span> <span class="n">X</span>
<span class="bp">self</span><span class="o">.</span><span class="n">y</span> <span class="o">=</span> <span class="n">y</span>
<span class="bp">self</span><span class="o">.</span><span class="n">classes</span><span class="p">,</span> <span class="n">counts</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">unique</span><span class="p">(</span><span class="n">y</span><span class="p">,</span> <span class="n">return_counts</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">priors</span> <span class="o">=</span> <span class="n">counts</span><span class="o">/</span><span class="nb">sum</span><span class="p">(</span><span class="n">counts</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">prob_x_feature_given_y</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x_feature_val</span><span class="p">,</span> <span class="n">x_feature_ix</span><span class="p">,</span> <span class="n">y_class</span><span class="p">):</span>
<span class="n">X</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">X</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">y</span> <span class="o">==</span> <span class="n">y_class</span><span class="p">]</span>
<span class="n">feature_vals</span><span class="p">,</span> <span class="n">counts</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">unique</span><span class="p">(</span><span class="n">X</span><span class="p">[:,</span> <span class="n">x_feature_ix</span><span class="p">],</span> <span class="n">return_counts</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">prob</span> <span class="o">=</span> <span class="p">((</span><span class="n">counts</span><span class="p">[</span><span class="n">feature_vals</span> <span class="o">==</span> <span class="n">x_feature_val</span><span class="p">]</span>
<span class="k">if</span>
<span class="nb">len</span><span class="p">(</span><span class="n">counts</span><span class="p">[</span><span class="n">feature_vals</span> <span class="o">==</span> <span class="n">x_feature_val</span><span class="p">])</span>
<span class="k">else</span>
<span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">0</span><span class="p">])</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span><span class="o">/</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">counts</span><span class="p">)</span><span class="o">+</span><span class="nb">len</span><span class="p">(</span><span class="n">feature_vals</span><span class="p">)))</span>
<span class="k">return</span> <span class="n">prob</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="k">def</span> <span class="nf">prob_x_given_y</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">y_class</span><span class="p">):</span>
<span class="n">prob</span> <span class="o">=</span> <span class="mi">1</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]):</span>
<span class="n">prob</span> <span class="o">*=</span> <span class="bp">self</span><span class="o">.</span><span class="n">prob_x_feature_given_y</span><span class="p">(</span><span class="n">x</span><span class="p">[:,</span> <span class="n">i</span><span class="p">],</span> <span class="n">i</span><span class="p">,</span> <span class="n">y_class</span><span class="p">)</span> <span class="c1">#P(X=x|y=y_class)</span>
<span class="k">return</span> <span class="n">prob</span>
<span class="k">def</span> <span class="nf">predict_instance</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x_test</span><span class="p">):</span>
<span class="n">classes_prob</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">classes</span><span class="p">)):</span>
<span class="n">classes_prob</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">prob_x_given_y</span><span class="p">(</span><span class="n">x_test</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">classes</span><span class="p">[</span><span class="n">i</span><span class="p">])</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">priors</span><span class="p">[</span><span class="n">i</span><span class="p">])</span> <span class="c1">#P(X=x|y=self.class[i])</span>
<span class="n">ix</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">classes_prob</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">classes</span><span class="p">[</span><span class="n">ix</span><span class="p">],</span> <span class="p">(</span><span class="n">classes_prob</span><span class="p">[</span><span class="n">ix</span><span class="p">]</span><span class="o">/</span><span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">classes_prob</span><span class="p">))</span>
<span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X_test</span><span class="p">):</span>
<span class="n">y_pred</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">X_test</span><span class="p">)):</span>
<span class="n">y_pred</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">predict_instance</span><span class="p">(</span><span class="n">X_test</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="o">-</span><span class="mi">1</span><span class="p">)))</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">y_pred</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<p>When called the <code class="docutils literal notranslate"><span class="pre">fit</span></code> function using a object of class <code class="docutils literal notranslate"><span class="pre">NaiveBayes</span></code> it calulates the number of classes that data has as well as calculates their probability which will be required later when predicting.<br />
For predicting the classes for a dataset, <code class="docutils literal notranslate"><span class="pre">predict</span></code> method is called which for every instance in the given data calls <code class="docutils literal notranslate"><span class="pre">predict_instance</span></code> method and stores the output in a list and then returns the numpy array of it.<code class="docutils literal notranslate"><span class="pre">predict_instance</span></code> method basically caluclates probabilities of the instance belonging to each <a class="reference external" href="http://class.As">class.As</a> we have seen above, for the given data we calculte the probability of it to belong to every class, and class with highest probability is said to be the output.<br />
<code class="docutils literal notranslate"><span class="pre">prob_x_feature_given_y</span></code> methods return the probabilty of the feature value given the class which is then used to calculate the probabilty of the class.Now let’s use the datset to train and then predict with help of our trained model.</p>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="c1"># Training the model</span>
<span class="n">nb</span><span class="o">=</span> <span class="n">NaiveBayes</span><span class="p">()</span>
<span class="n">nb</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<p><strong>Let us the prediction of first hundred data points of our dataset</strong></p>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="n">y_pred</span> <span class="o">=</span> <span class="n">nb</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X</span><span class="p">[:</span><span class="mi">100</span><span class="p">])</span>
</pre></div>
</div>
</div>
</div>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="c1"># Accuracy</span>
<span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">y_pred</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">]</span> <span class="o">==</span> <span class="n">y</span><span class="p">[:</span><span class="mi">100</span><span class="p">])</span>
</pre></div>
</div>
</div>
<div class="cell_output docutils container">
<div class="output text_plain highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>0.88
</pre></div>
</div>
</div>
</div>
<hr class="docutils" />
<p>We can also Use Scikit learn’s Naive Bayes class which comes with more specifications which can be altered to increase the accuracy also a provides class to perform the regression task and much more. you can refer to the link given below-</p>
<p><a class="reference external" href="https://scikit-learn.org/stable/modules/naive_bayes.html">https://scikit-learn.org/stable/modules/naive_bayes.html</a></p>
</section>
<hr class="docutils" />
<section id="advantages-and-disadvantages">
<h2>Advantages And Disadvantages<a class="headerlink" href="#advantages-and-disadvantages" title="Permalink to this headline">¶</a></h2>
<section id="advantages">
<h3>Advantages<a class="headerlink" href="#advantages" title="Permalink to this headline">¶</a></h3>
<ol class="simple">
<li><p>It is easy and fast to predict the class of the test data set. It also performs well in <strong>multi-class prediction</strong>.</p></li>
<li><p>When assumption of independence holds, a Naive Bayes classifier performs better compare to other models like logistic regression and you need less training data.</p></li>
<li><p>It perform well in case of categorical input variables compared to numerical variable(s). For numerical variable, normal distribution is assumed (bell curve, which is a strong assumption).</p></li>
</ol>
</section>
<section id="disadvantages">
<h3>Disadvantages<a class="headerlink" href="#disadvantages" title="Permalink to this headline">¶</a></h3>
<ol class="simple">
<li><p>If categorical variable has a category (in test data set), which was not observed in training data set, then model will assign a 0 (zero) probability and will be unable to make a prediction. This is often known as Zero Frequency. To solve this, we can use the smoothing technique. One of the simplest smoothing techniques is called Laplace estimation.</p></li>
<li><p>On the other side naive Bayes is also known as a bad estimator, so the probability outputs are not to be taken too seriously.</p></li>
<li><p>Another limitation of Naive Bayes is the assumption of independent predictors. In real life, it is almost impossible that we get a set of predictors which are completely independent.</p></li>
</ol>
</section>
</section>
<section id="further-reading">
<h2>Further Reading<a class="headerlink" href="#further-reading" title="Permalink to this headline">¶</a></h2>
<p><a class="reference external" href="https://scikit-learn.org/stable/modules/naive_bayes.html">https://scikit-learn.org/stable/modules/naive_bayes.html</a></p>
</section>
</section>
<script type="text/x-thebe-config">
{
requestKernel: true,
binderOptions: {
repo: "binder-examples/jupyter-stacks-datascience",
ref: "master",
},
codeMirrorConfig: {
theme: "abcdef",
mode: "python"
},
kernelOptions: {
kernelName: "python3",
path: "./."
},
predefinedOutput: true
}
</script>
<script>kernelName = 'python3'</script>
</div>
<!-- Previous / next buttons -->
<div class='prev-next-area'>
<a class='left-prev' id="prev-link" href="7.%20Ensemble.html" title="previous page">
<i class="fas fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title">Ensemble Learning</p>
</div>
</a>
<a class='right-next' id="next-link" href="9.2%20Multinomial%20Naive%20Bayes.html" title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title">Multinomial Naive Bayes</p>
</div>
<i class="fas fa-angle-right"></i>
</a>
</div>
</div>
</div>
<footer class="footer">
<div class="container">
<p>
By Coding Blocks Pvt Ltd<br/>
© Copyright 2021.<br/>
</p>
</div>
</footer>
</main>
</div>
</div>
<script src="_static/js/index.be7d3bbb2ef33a8344ce.js"></script>
</body>
</html>