|
| 1 | +import numpy as np |
1 | 2 | from unittest import TestCase
|
2 |
| -from pyindicators import is_divergence |
| 3 | +from pyindicators import is_divergence, bearish_divergence_multi_dataframe, \ |
| 4 | + PyIndicatorException |
3 | 5 |
|
4 | 6 | import pandas as pd
|
5 | 7 |
|
@@ -100,3 +102,162 @@ def test_detect_bearish_sequence_with_wrong_params_pandas(self):
|
100 | 102 | "DateTime": pd.date_range("2021-01-01", periods=10, freq="D")
|
101 | 103 | })
|
102 | 104 | self.assertFalse(is_divergence(df, window_size=1, number_of_data_points=10, column_one="RSI_highs", column_two="Close_highs"))
|
| 105 | + |
| 106 | + |
| 107 | +class TestBearishDivergenceMultiDataFrame(TestCase): |
| 108 | + |
| 109 | + def test_bearish_divergence_detected(self): |
| 110 | + # Setup indicator (e.g., RSI) and price (e.g., Close) with divergence |
| 111 | + indicator = pd.DataFrame({ |
| 112 | + "RSI": [50, 60, 70, 65, 60, 58, 55], |
| 113 | + }, index=pd.date_range("2022-01-01", periods=7)) |
| 114 | + price = pd.DataFrame({ |
| 115 | + "Close": [100, 102, 105, 108, 110, 112, 115], # Higher highs |
| 116 | + }, index=pd.date_range("2022-01-01", periods=7)) |
| 117 | + |
| 118 | + result = pd.DataFrame(index=indicator.index) |
| 119 | + |
| 120 | + # Force peaks manually for deterministic test |
| 121 | + indicator["RSI_highs"] = [0, 0, 0, 0, -1, 0, 0] # Two indicator highs |
| 122 | + price["Close_highs"] = [0, 0, 0, 0, 1, 0, 0] # Two price highs |
| 123 | + |
| 124 | + out = bearish_divergence_multi_dataframe( |
| 125 | + first_df=indicator, |
| 126 | + second_df=price, |
| 127 | + result_df=result, |
| 128 | + first_column="RSI", |
| 129 | + second_column="Close", |
| 130 | + window_size=2, |
| 131 | + result_column="bearish_divergence" |
| 132 | + ) |
| 133 | + |
| 134 | + self.assertIn("bearish_divergence", out.columns) |
| 135 | + self.assertTrue(any(out["bearish_divergence"])) |
| 136 | + |
| 137 | + indicator = pd.DataFrame({ |
| 138 | + "RSI": [50, 60, 70, 65, 60, 58, 55], |
| 139 | + }, index=pd.date_range("2022-01-01", periods=7)) |
| 140 | + price = pd.DataFrame({ |
| 141 | + "Close": [100, 102, 105, 108, 110, 112, 115], # Higher highs |
| 142 | + }, index=pd.date_range("2022-01-01", periods=7)) |
| 143 | + |
| 144 | + result = pd.DataFrame(index=indicator.index) |
| 145 | + |
| 146 | + # Force peaks manually for deterministic test |
| 147 | + indicator["RSI_highs"] = [0, 0, 0, 0, 1, 0, 0] # Two indicator highs |
| 148 | + price["Close_highs"] = [0, 0, 0, 0, 1, 0, 0] # Two price highs |
| 149 | + |
| 150 | + out = bearish_divergence_multi_dataframe( |
| 151 | + first_df=indicator, |
| 152 | + second_df=price, |
| 153 | + result_df=result, |
| 154 | + first_column="RSI", |
| 155 | + second_column="Close", |
| 156 | + window_size=2, |
| 157 | + result_column="bearish_divergence" |
| 158 | + ) |
| 159 | + |
| 160 | + self.assertIn("bearish_divergence", out.columns) |
| 161 | + self.assertFalse(any(out["bearish_divergence"])) |
| 162 | + |
| 163 | + indicator = pd.DataFrame({ |
| 164 | + "RSI": [50, 60, 70, 65, 60, 58, 55], |
| 165 | + }, index=pd.date_range("2022-01-01", periods=7)) |
| 166 | + price = pd.DataFrame({ |
| 167 | + "Close": [100, 102, 105, 108, 110, 112, 115], # Higher highs |
| 168 | + }, index=pd.date_range("2022-01-01", periods=7)) |
| 169 | + |
| 170 | + result = pd.DataFrame(index=indicator.index) |
| 171 | + |
| 172 | + # Force peaks manually for deterministic test |
| 173 | + indicator["RSI_highs"] = [0, 0, 0, -1, 0, 0, 0] # Two indicator highs |
| 174 | + price["Close_highs"] = [0, 0, 0, 0, 0, 1, 0] # Two price highs |
| 175 | + |
| 176 | + out = bearish_divergence_multi_dataframe( |
| 177 | + first_df=indicator, |
| 178 | + second_df=price, |
| 179 | + result_df=result, |
| 180 | + first_column="RSI", |
| 181 | + second_column="Close", |
| 182 | + window_size=2, |
| 183 | + result_column="bearish_divergence" |
| 184 | + ) |
| 185 | + |
| 186 | + self.assertIn("bearish_divergence", out.columns) |
| 187 | + self.assertFalse(any(out["bearish_divergence"])) |
| 188 | + |
| 189 | + out = bearish_divergence_multi_dataframe( |
| 190 | + first_df=indicator, |
| 191 | + second_df=price, |
| 192 | + result_df=result, |
| 193 | + first_column="RSI", |
| 194 | + second_column="Close", |
| 195 | + window_size=3, |
| 196 | + result_column="bearish_divergence" |
| 197 | + ) |
| 198 | + |
| 199 | + self.assertIn("bearish_divergence", out.columns) |
| 200 | + self.assertTrue(any(out["bearish_divergence"])) |
| 201 | + |
| 202 | + def test_missing_column_exception(self): |
| 203 | + df1 = pd.DataFrame({"RSI": [50, 60]}, index=pd.date_range("2022-01-01", periods=2)) |
| 204 | + df2 = pd.DataFrame({"Close": [100, 110]}, index=pd.date_range("2022-01-01", periods=2)) |
| 205 | + result = pd.DataFrame(index=df1.index) |
| 206 | + |
| 207 | + with self.assertRaises(PyIndicatorException): |
| 208 | + bearish_divergence_multi_dataframe( |
| 209 | + first_df=df1.drop("RSI", axis=1), |
| 210 | + second_df=df2, |
| 211 | + result_df=result, |
| 212 | + first_column="RSI", |
| 213 | + second_column="Close" |
| 214 | + ) |
| 215 | + |
| 216 | + def test_not_enough_data_exception(self): |
| 217 | + df1 = pd.DataFrame({"RSI": [50]}, index=pd.date_range("2022-01-01", periods=1)) |
| 218 | + df2 = pd.DataFrame({"Close": [100]}, index=pd.date_range("2022-01-01", periods=1)) |
| 219 | + result = pd.DataFrame(index=df1.index) |
| 220 | + |
| 221 | + # Assume detect_peaks adds _highs column |
| 222 | + df1["RSI_highs"] = [1] |
| 223 | + df2["Close_highs"] = [1] |
| 224 | + |
| 225 | + with self.assertRaises(PyIndicatorException): |
| 226 | + bearish_divergence_multi_dataframe( |
| 227 | + first_df=df1, |
| 228 | + second_df=df2, |
| 229 | + result_df=result, |
| 230 | + first_column="RSI", |
| 231 | + second_column="Close", |
| 232 | + window_size=3 |
| 233 | + ) |
| 234 | + |
| 235 | + def test_different_timeframes_align_correctly(self): |
| 236 | + daily_index = pd.date_range("2022-01-01", periods=2, freq="D") |
| 237 | + indicator_df = pd.DataFrame({ |
| 238 | + "RSI": [65, 60], |
| 239 | + }, index=daily_index) |
| 240 | + |
| 241 | + # 2-hour close prices — only some times will match the daily timestamps |
| 242 | + two_hour_index = pd.date_range("2022-01-01", periods=12, freq="2h") |
| 243 | + price_df = pd.DataFrame({ |
| 244 | + "Close": [100, 102, 105, 108, 110, 112, 115, 117, 120, 122, 125, 130] |
| 245 | + }, index=two_hour_index) |
| 246 | + |
| 247 | + result_df = pd.DataFrame(index=price_df.index) |
| 248 | + |
| 249 | + # Inject fake peaks |
| 250 | + indicator_df["RSI_highs"] = [-1, 0] |
| 251 | + price_df["Close_highs"] = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
| 252 | + |
| 253 | + result = bearish_divergence_multi_dataframe( |
| 254 | + first_df=indicator_df, |
| 255 | + second_df=price_df, |
| 256 | + result_df=result_df, |
| 257 | + first_column="RSI", |
| 258 | + second_column="Close", |
| 259 | + window_size=2, |
| 260 | + result_column="bearish_divergence" |
| 261 | + ) |
| 262 | + self.assertIn("bearish_divergence", result.columns) |
| 263 | + self.assertTrue(any(result["bearish_divergence"])) |
0 commit comments