-
Notifications
You must be signed in to change notification settings - Fork 2
/
crf.py
425 lines (356 loc) · 17.4 KB
/
crf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
"""
Conditional random field
"""
from typing import List, Tuple, Dict, Union
import torch
from allennlp.common.checks import ConfigurationError
import allennlp.nn.util as util
VITERBI_DECODING = Tuple[List[int], float] # a list of tags, and a viterbi score
def allowed_transitions(constraint_type: str, labels: Dict[int, str]) -> List[Tuple[int, int]]:
"""
Given labels and a constraint type, returns the allowed transitions. It will
additionally include transitions for the start and end states, which are used
by the conditional random field.
# Parameters
constraint_type : `str`, required
Indicates which constraint to apply. Current choices are
"BIO", "IOB1", "BIOUL", and "BMES".
labels : `Dict[int, str]`, required
A mapping {label_id -> label}. Most commonly this would be the value from
Vocabulary.get_index_to_token_vocabulary()
# Returns
`List[Tuple[int, int]]`
The allowed transitions (from_label_id, to_label_id).
"""
num_labels = len(labels)
start_tag = num_labels
end_tag = num_labels + 1
labels_with_boundaries = list(labels.items()) + [(start_tag, "START"), (end_tag, "END")]
allowed = []
for from_label_index, from_label in labels_with_boundaries:
if from_label in ("START", "END"):
from_tag = from_label
from_entity = ""
else:
from_tag = from_label[0]
from_entity = from_label[1:]
for to_label_index, to_label in labels_with_boundaries:
if to_label in ("START", "END"):
to_tag = to_label
to_entity = ""
else:
to_tag = to_label[0]
to_entity = to_label[1:]
if is_transition_allowed(constraint_type, from_tag, from_entity, to_tag, to_entity):
allowed.append((from_label_index, to_label_index))
return allowed
def is_transition_allowed(
constraint_type: str, from_tag: str, from_entity: str, to_tag: str, to_entity: str
):
"""
Given a constraint type and strings `from_tag` and `to_tag` that
represent the origin and destination of the transition, return whether
the transition is allowed under the given constraint type.
# Parameters
constraint_type : `str`, required
Indicates which constraint to apply. Current choices are
"BIO", "IOB1", "BIOUL", and "BMES".
from_tag : `str`, required
The tag that the transition originates from. For example, if the
label is `I-PER`, the `from_tag` is `I`.
from_entity : `str`, required
The entity corresponding to the `from_tag`. For example, if the
label is `I-PER`, the `from_entity` is `PER`.
to_tag : `str`, required
The tag that the transition leads to. For example, if the
label is `I-PER`, the `to_tag` is `I`.
to_entity : `str`, required
The entity corresponding to the `to_tag`. For example, if the
label is `I-PER`, the `to_entity` is `PER`.
# Returns
`bool`
Whether the transition is allowed under the given `constraint_type`.
"""
if to_tag == "START" or from_tag == "END":
# Cannot transition into START or from END
return False
if constraint_type == "BIOUL":
if from_tag == "START":
return to_tag in ("O", "B", "U")
if to_tag == "END":
return from_tag in ("O", "L", "U")
return any(
[
# O can transition to O, B-* or U-*
# L-x can transition to O, B-*, or U-*
# U-x can transition to O, B-*, or U-*
from_tag in ("O", "L", "U") and to_tag in ("O", "B", "U"),
# B-x can only transition to I-x or L-x
# I-x can only transition to I-x or L-x
from_tag in ("B", "I") and to_tag in ("I", "L") and from_entity == to_entity,
]
)
elif constraint_type == "BIO":
if from_tag == "START":
return to_tag in ("O", "B")
if to_tag == "END":
return from_tag in ("O", "B", "I")
return any(
[
# Can always transition to O or B-x
to_tag in ("O", "B"),
# Can only transition to I-x from B-x or I-x
to_tag == "I" and from_tag in ("B", "I") and from_entity == to_entity,
]
)
elif constraint_type == "IOB1":
if from_tag == "START":
return to_tag in ("O", "I")
if to_tag == "END":
return from_tag in ("O", "B", "I")
return any(
[
# Can always transition to O or I-x
to_tag in ("O", "I"),
# Can only transition to B-x from B-x or I-x, where
# x is the same tag.
to_tag == "B" and from_tag in ("B", "I") and from_entity == to_entity,
]
)
elif constraint_type == "BMES":
if from_tag == "START":
return to_tag in ("B", "S")
if to_tag == "END":
return from_tag in ("E", "S")
return any(
[
# Can only transition to B or S from E or S.
to_tag in ("B", "S") and from_tag in ("E", "S"),
# Can only transition to M-x from B-x, where
# x is the same tag.
to_tag == "M" and from_tag in ("B", "M") and from_entity == to_entity,
# Can only transition to E-x from B-x or M-x, where
# x is the same tag.
to_tag == "E" and from_tag in ("B", "M") and from_entity == to_entity,
]
)
else:
raise ConfigurationError(f"Unknown constraint type: {constraint_type}")
class ConditionalRandomField(torch.nn.Module):
"""
This module uses the "forward-backward" algorithm to compute
the log-likelihood of its inputs assuming a conditional random field model.
See, e.g. http://www.cs.columbia.edu/~mcollins/fb.pdf
# Parameters
num_tags : `int`, required
The number of tags.
constraints : `List[Tuple[int, int]]`, optional (default = `None`)
An optional list of allowed transitions (from_tag_id, to_tag_id).
These are applied to `viterbi_tags()` but do not affect `forward()`.
These should be derived from `allowed_transitions` so that the
start and end transitions are handled correctly for your tag type.
include_start_end_transitions : `bool`, optional (default = `True`)
Whether to include the start and end transition parameters.
"""
def __init__(
self,
num_tags: int,
constraints: List[Tuple[int, int]] = None,
include_start_end_transitions: bool = True,
) -> None:
super().__init__()
self.num_tags = num_tags
# transitions[i, j] is the logit for transitioning from state i to state j.
self.transitions = torch.nn.Parameter(torch.Tensor(num_tags, num_tags))
# _constraint_mask indicates valid transitions (based on supplied constraints).
# Include special start of sequence (num_tags + 1) and end of sequence tags (num_tags + 2)
if constraints is None:
# All transitions are valid.
constraint_mask = torch.Tensor(num_tags + 2, num_tags + 2).fill_(1.0)
else:
constraint_mask = torch.Tensor(num_tags + 2, num_tags + 2).fill_(0.0)
for i, j in constraints:
constraint_mask[i, j] = 1.0
self._constraint_mask = torch.nn.Parameter(constraint_mask, requires_grad=False)
# Also need logits for transitioning from "start" state and to "end" state.
self.include_start_end_transitions = include_start_end_transitions
if include_start_end_transitions:
self.start_transitions = torch.nn.Parameter(torch.Tensor(num_tags))
self.end_transitions = torch.nn.Parameter(torch.Tensor(num_tags))
self.reset_parameters()
def reset_parameters(self):
torch.nn.init.xavier_normal_(self.transitions)
if self.include_start_end_transitions:
torch.nn.init.normal_(self.start_transitions, std=0.05)
torch.nn.init.normal_(self.end_transitions, std=0.05)
def _input_likelihood(self, logits: torch.Tensor, mask: torch.BoolTensor) -> torch.Tensor:
"""
Computes the (batch_size,) denominator term for the log-likelihood, which is the
sum of the likelihoods across all possible state sequences.
"""
batch_size, sequence_length, num_tags = logits.size()
# Transpose batch size and sequence dimensions
mask = mask.transpose(0, 1).contiguous()
logits = logits.transpose(0, 1).contiguous()
# Initial alpha is the (batch_size, num_tags) tensor of likelihoods combining the
# transitions to the initial states and the logits for the first timestep.
if self.include_start_end_transitions:
alpha = self.start_transitions.view(1, num_tags) + logits[0]
else:
alpha = logits[0]
# For each i we compute logits for the transitions from timestep i-1 to timestep i.
# We do so in a (batch_size, num_tags, num_tags) tensor where the axes are
# (instance, current_tag, next_tag)
for i in range(1, sequence_length):
# The emit scores are for time i ("next_tag") so we broadcast along the current_tag axis.
emit_scores = logits[i].view(batch_size, 1, num_tags)
# Transition scores are (current_tag, next_tag) so we broadcast along the instance axis.
transition_scores = self.transitions.view(1, num_tags, num_tags)
# Alpha is for the current_tag, so we broadcast along the next_tag axis.
broadcast_alpha = alpha.view(batch_size, num_tags, 1)
# Add all the scores together and logexp over the current_tag axis.
inner = broadcast_alpha + emit_scores + transition_scores
# In valid positions (mask == True) we want to take the logsumexp over the current_tag dimension
# of `inner`. Otherwise (mask == False) we want to retain the previous alpha.
alpha = util.logsumexp(inner, 1) * mask[i].view(batch_size, 1) + alpha * (
~mask[i]
).view(batch_size, 1)
# Every sequence needs to end with a transition to the stop_tag.
if self.include_start_end_transitions:
stops = alpha + self.end_transitions.view(1, num_tags)
else:
stops = alpha
# Finally we log_sum_exp along the num_tags dim, result is (batch_size,)
return util.logsumexp(stops)
def _joint_likelihood(
self, logits: torch.Tensor, tags: torch.Tensor, mask: torch.BoolTensor
) -> torch.Tensor:
"""
Computes the numerator term for the log-likelihood, which is just score(inputs, tags)
"""
batch_size, sequence_length, _ = logits.data.shape
# Transpose batch size and sequence dimensions:
logits = logits.transpose(0, 1).contiguous()
mask = mask.transpose(0, 1).contiguous()
tags = tags.transpose(0, 1).contiguous()
# Start with the transition scores from start_tag to the first tag in each input
if self.include_start_end_transitions:
score = self.start_transitions.index_select(0, tags[0])
else:
score = 0.0
# Add up the scores for the observed transitions and all the inputs but the last
for i in range(sequence_length - 1):
# Each is shape (batch_size,)
current_tag, next_tag = tags[i], tags[i + 1]
# The scores for transitioning from current_tag to next_tag
transition_score = self.transitions[current_tag.view(-1), next_tag.view(-1)]
# The score for using current_tag
emit_score = logits[i].gather(1, current_tag.view(batch_size, 1)).squeeze(1)
# Include transition score if next element is unmasked,
# input_score if this element is unmasked.
score = score + transition_score * mask[i + 1] + emit_score * mask[i]
# Transition from last state to "stop" state. To start with, we need to find the last tag
# for each instance.
last_tag_index = mask.sum(0).long() - 1
last_tags = tags.gather(0, last_tag_index.view(1, batch_size)).squeeze(0)
# Compute score of transitioning to `stop_tag` from each "last tag".
if self.include_start_end_transitions:
last_transition_score = self.end_transitions.index_select(0, last_tags)
else:
last_transition_score = 0.0
# Add the last input if it's not masked.
last_inputs = logits[-1] # (batch_size, num_tags)
last_input_score = last_inputs.gather(1, last_tags.view(-1, 1)) # (batch_size, 1)
last_input_score = last_input_score.squeeze() # (batch_size,)
score = score + last_transition_score + last_input_score * mask[-1]
return score
def forward(
self, inputs: torch.Tensor, tags: torch.Tensor, mask: torch.BoolTensor = None
) -> torch.Tensor:
"""
Computes the log likelihood.
"""
if mask is None:
mask = torch.ones(*tags.size(), dtype=torch.bool)
log_denominator = self._input_likelihood(inputs, mask)
log_numerator = self._joint_likelihood(inputs, tags, mask)
return torch.sum(log_numerator - log_denominator)
def viterbi_tags(
self, logits: torch.Tensor, mask: torch.BoolTensor = None, top_k: int = None
) -> Union[List[VITERBI_DECODING], List[List[VITERBI_DECODING]]]:
"""
Uses viterbi algorithm to find most likely tags for the given inputs.
If constraints are applied, disallows all other transitions.
Returns a list of results, of the same size as the batch (one result per batch member)
Each result is a List of length top_k, containing the top K viterbi decodings
Each decoding is a tuple (tag_sequence, viterbi_score)
For backwards compatibility, if top_k is None, then instead returns a flat list of
tag sequences (the top tag sequence for each batch item).
"""
if mask is None:
mask = torch.ones(*logits.shape[:2], dtype=torch.bool, device=logits.device)
if top_k is None:
top_k = 1
flatten_output = True
else:
flatten_output = False
_, max_seq_length, num_tags = logits.size()
# Get the tensors out of the variables
logits, mask = logits.data, mask.data
# Augment transitions matrix with start and end transitions
start_tag = num_tags
end_tag = num_tags + 1
transitions = torch.Tensor(num_tags + 2, num_tags + 2).fill_(-10000.0)
# Apply transition constraints
constrained_transitions = self.transitions * self._constraint_mask[
:num_tags, :num_tags
] + -10000.0 * (1 - self._constraint_mask[:num_tags, :num_tags])
transitions[:num_tags, :num_tags] = constrained_transitions.data
if self.include_start_end_transitions:
transitions[
start_tag, :num_tags
] = self.start_transitions.detach() * self._constraint_mask[
start_tag, :num_tags
].data + -10000.0 * (
1 - self._constraint_mask[start_tag, :num_tags].detach()
)
transitions[:num_tags, end_tag] = self.end_transitions.detach() * self._constraint_mask[
:num_tags, end_tag
].data + -10000.0 * (1 - self._constraint_mask[:num_tags, end_tag].detach())
else:
transitions[start_tag, :num_tags] = -10000.0 * (
1 - self._constraint_mask[start_tag, :num_tags].detach()
)
transitions[:num_tags, end_tag] = -10000.0 * (
1 - self._constraint_mask[:num_tags, end_tag].detach()
)
best_paths = []
# Pad the max sequence length by 2 to account for start_tag + end_tag.
tag_sequence = torch.Tensor(max_seq_length + 2, num_tags + 2)
for prediction, prediction_mask in zip(logits, mask):
mask_indices = prediction_mask.nonzero().squeeze()
masked_prediction = torch.index_select(prediction, 0, mask_indices)
sequence_length = masked_prediction.shape[0]
# Start with everything totally unlikely
tag_sequence.fill_(-10000.0)
# At timestep 0 we must have the START_TAG
tag_sequence[0, start_tag] = 0.0
# At steps 1, ..., sequence_length we just use the incoming prediction
tag_sequence[1 : (sequence_length + 1), :num_tags] = masked_prediction
# And at the last timestep we must have the END_TAG
tag_sequence[sequence_length + 1, end_tag] = 0.0
# We pass the tags and the transitions to `viterbi_decode`.
viterbi_paths, viterbi_scores = util.viterbi_decode(
tag_sequence=tag_sequence[: (sequence_length + 2)],
transition_matrix=transitions,
top_k=top_k,
)
top_k_paths = []
for viterbi_path, viterbi_score in zip(viterbi_paths, viterbi_scores):
# Get rid of START and END sentinels and append.
viterbi_path = viterbi_path[1:-1]
top_k_paths.append((viterbi_path, viterbi_score.item()))
best_paths.append(top_k_paths)
if flatten_output:
return [top_k_paths[0] for top_k_paths in best_paths]
return best_paths