-
Notifications
You must be signed in to change notification settings - Fork 4
/
utils_mask.py
296 lines (239 loc) · 12.4 KB
/
utils_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
import numpy as np
from matplotlib import cm
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import torch
from utils import myroll2d
def create_outer_edge_mask_torch(mask, edge_thickness = 20):
mask_down = myroll2d(mask, edge_thickness, 0 )
mask_edge_down = (mask_down.to(torch.float) -mask.to(torch.float))>0
mask_up = myroll2d(mask, -edge_thickness, 0)
mask_edge_up = (mask_up.to(torch.float) -mask.to(torch.float))>0
mask_left = myroll2d(mask, 0, -edge_thickness)
mask_edge_left = (mask_left.to(torch.float) -mask.to(torch.float))>0
mask_right = myroll2d(mask, 0, edge_thickness)
mask_edge_right = (mask_right.to(torch.float) -mask.to(torch.float))>0
mask_ur = myroll2d(mask, -edge_thickness,edge_thickness)
mask_edge_ur = (mask_ur.to(torch.float) -mask.to(torch.float))>0
mask_ul = myroll2d(mask, -edge_thickness,-edge_thickness)
mask_edge_ul = (mask_ul.to(torch.float) -mask.to(torch.float))>0
mask_dr = myroll2d(mask, edge_thickness,edge_thickness )
mask_edge_dr = (mask_dr.to(torch.float) -mask.to(torch.float))>0
mask_dl = myroll2d(mask, edge_thickness,-edge_thickness)
mask_edge_ul = (mask_dl.to(torch.float) -mask.to(torch.float))>0
mask_edge = mask_union_torch(mask_edge_down, mask_edge_up, mask_edge_left, mask_edge_right,
mask_edge_ur, mask_edge_ul, mask_edge_dr, mask_edge_ul)
return mask_edge
def mask_substract_torch(mask1, mask2):
return ((mask1.cpu().to(torch.float)-mask2.cpu().to(torch.float))>0).to(torch.uint8)
def check_mask_overlap_torch(*masks):
assert torch.any(sum([m.float() for m in masks])<=1 )
def check_mask_overlap_numpy(*masks):
assert np.all(sum([m.astype(float) for m in masks])<=1 )
def check_cover_all_torch (*masks):
assert torch.all(sum([m.cpu().float() for m in masks])==1)
def process_mask_to_follow_priority(mask_list, priority_list):
for idx1, (m1 , p1) in enumerate(zip(mask_list, priority_list)):
for idx2, (m2 , p2) in enumerate(zip(mask_list, priority_list)):
if p2 > p1:
mask_list[idx1] = ((m1.astype(float)-m2.astype(float))>0).astype(np.uint8)
return mask_list
def mask_union(*masks):
masks = [m.astype(float) for m in masks]
res = sum(masks)>0
return res.astype(np.uint8)
def mask_intersection(mask1, mask2):
mask_uni = mask_union(mask1, mask2)
mask_intersec = ((mask1.astype(float)-mask2.astype(float))==0) * mask_uni
return mask_intersec
def mask_union_torch(*masks):
masks = [m.float() for m in masks]
res = sum(masks)>0
return res.to(torch.uint8)
def mask_intersection_torch(mask1, mask2):
mask_uni = mask_union_torch(mask1, mask2)
mask_intersec = ((mask1.float()-mask2.float())==0) * mask_uni
return mask_intersec.cpu().to(torch.uint8)
def visualize_mask_list(mask_list, savepath):
mask = 0
for midx, m in enumerate(mask_list):
try:
mask += m.astype(float)* midx
except:
mask += m.float()*midx
viridis = cm.get_cmap('viridis', len(mask_list))
fig, ax = plt.subplots()
ax.imshow( mask)
handles = []
label_list = []
for idx , _ in enumerate(mask_list):
color = viridis(idx)
label = f"{idx}"
handles.append(mpatches.Patch(color=color, label=label))
label_list.append(label)
ax.legend(handles=handles)
plt.savefig(savepath)
def visualize_mask_list_clean(mask_list, savepath):
mask = 0
for midx, m in enumerate(mask_list):
try:
mask += m.astype(float)* midx
except:
mask += m.float()*midx
viridis = cm.get_cmap('viridis', len(mask_list))
fig, ax = plt.subplots()
ax.imshow( mask)
handles = []
label_list = []
for idx , _ in enumerate(mask_list):
color = viridis(idx)
label = f"{idx}"
handles.append(mpatches.Patch(color=color, label=label))
label_list.append(label)
# ax.legend(handles=handles)
plt.savefig(savepath, dpi=500)
def move_mask(mask_select, delta_x, delta_y):
mask_edit = myroll2d(mask_select, delta_y, delta_x)
return mask_edit
def stack_mask_with_priority (mask_list_np, priority_list, edit_idx_list):
mask_sel = mask_union(*[mask_list_np[eid] for eid in edit_idx_list])
for midx, mask in enumerate(mask_list_np):
if midx not in edit_idx_list:
if priority_list[edit_idx_list[0]] >= priority_list[midx]:
mask = mask.astype(float) - np.logical_and(mask.astype(bool) , mask_sel.astype(bool)).astype(float)
mask_list_np[midx] = mask.astype("uint8")
for midx in edit_idx_list:
for midx_1 in edit_idx_list:
if midx != midx_1:
if priority_list[midx] <= priority_list[midx_1]:
mask = mask_list_np[midx].astype(float) - np.logical_and(mask_list_np[midx].astype(bool), mask_list_np[midx_1].astype(bool)).astype(float)
mask_list_np[midx] = mask.astype("uint8")
return mask_list_np
def process_remain_mask(mask_list, edit_idx_list = None, force_mask_remain = None):
print("Start to process remaining mask using nearest neighbor")
width = mask_list[0].shape[0]
height = mask_list[0].shape[1]
pixel_ind = np.arange( width* height)
y_axis = np.arange(width)
ymesh = np.repeat(y_axis[:,np.newaxis], height, axis = 1) #N, N
ymesh_vec = ymesh.reshape(-1) #N *N
x_axis = np.arange(height)
xmesh = np.repeat(x_axis[np.newaxis, : ], width, axis = 0)
xmesh_vec = xmesh.reshape(-1)
mask_remain = (1 - sum([m.astype(float) for m in mask_list])).astype(np.uint8)
if force_mask_remain is not None:
mask_list[force_mask_remain] = (mask_list[force_mask_remain].astype(float) + mask_remain.astype(float)).astype(np.uint8)
else:
if edit_idx_list is not None:
a = [mask_list[eidx] for eidx in edit_idx_list]
mask_edit = mask_union(*a)
else:
mask_edit = np.zeros_like(mask_remain).astype(np.uint8)
mask_feasible = (1 - mask_remain.astype(float) - mask_edit.astype(float)).astype(np.uint8)
edge_width = 2
mask_feasible_down = myroll2d(mask_feasible, edge_width, 0)
mask_edge_down = (mask_feasible_down.astype(float) -mask_feasible.astype(float))<0
mask_feasible_up = myroll2d(mask_feasible, -edge_width, 0)
mask_edge_up = (mask_feasible_up.astype(float) -mask_feasible.astype(float))<0
mask_feasible_left = myroll2d(mask_feasible, 0, -edge_width)
mask_edge_left = (mask_feasible_left.astype(float) -mask_feasible.astype(float))<0
mask_feasible_right = myroll2d(mask_feasible, 0, edge_width)
mask_edge_right = (mask_feasible_right.astype(float) -mask_feasible.astype(float))<0
mask_feasible_ur = myroll2d(mask_feasible, -edge_width,edge_width)
mask_edge_ur = (mask_feasible_ur.astype(float) -mask_feasible.astype(float))<0
mask_feasible_ul = myroll2d(mask_feasible, -edge_width,-edge_width )
mask_edge_ul = (mask_feasible_ul.astype(float) -mask_feasible.astype(float))<0
mask_feasible_dr = myroll2d(mask_feasible, edge_width,edge_width )
mask_edge_dr = (mask_feasible_dr.astype(float) -mask_feasible.astype(float))<0
mask_feasible_dl = myroll2d(mask_feasible, edge_width,-edge_width)
mask_edge_ul = (mask_feasible_dl.astype(float) -mask_feasible.astype(float))<0
mask_edge = mask_union(
mask_edge_down, mask_edge_up, mask_edge_left, mask_edge_right, mask_edge_ur, mask_edge_ul, mask_edge_dr, mask_edge_ul
)
mask_feasible_edge = mask_intersection(mask_edge, mask_feasible)
vec_mask_feasible_edge = mask_feasible_edge.reshape(-1)
vec_mask_remain = mask_remain.reshape(-1)
indvec_all = np.arange(width*height)
vec_region_partition= 0
for mask_idx, mask in enumerate(mask_list):
vec_region_partition += mask.reshape(-1) * mask_idx
vec_region_partition += mask_remain.reshape(-1) * mask_idx
# assert 0 in vec_region_partition
vec_ind_remain = np.nonzero(vec_mask_remain)[0]
vec_ind_feasible_edge = np.nonzero(vec_mask_feasible_edge)[0]
vec_x_remain = xmesh_vec[vec_ind_remain]
vec_y_remain = ymesh_vec[vec_ind_remain]
vec_x_feasible_edge = xmesh_vec[vec_ind_feasible_edge]
vec_y_feasible_edge = ymesh_vec[vec_ind_feasible_edge]
x_dis = vec_x_remain[:,np.newaxis] - vec_x_feasible_edge[np.newaxis,:]
y_dis = vec_y_remain[:,np.newaxis] - vec_y_feasible_edge[np.newaxis,:]
dis = x_dis **2 + y_dis **2
pos = np.argmin(dis, axis = 1)
nearest_point = vec_ind_feasible_edge[pos] # closest point to target point
nearest_region = vec_region_partition[nearest_point]
nearest_region_set = set(nearest_region)
if edit_idx_list is not None:
for edit_idx in edit_idx_list:
assert edit_idx not in nearest_region
for midx, m in enumerate(mask_list):
if midx in nearest_region_set:
vec_newmask = np.zeros_like(indvec_all)
add_ind = vec_ind_remain [np.argwhere(nearest_region==midx)]
vec_newmask[add_ind] = 1
mask_list[midx] = mask_list[midx].astype(float)+ vec_newmask.reshape( mask_list[midx].shape).astype(float)
mask_list[midx] = mask_list[midx] > 0
print("Finish processing remaining mask, if you want to edit, launch the ui")
return mask_list, mask_remain
def resize_mask(mask_np, resize_ratio = 1):
w, h = mask_np.shape[0], mask_np.shape[1]
resized_w, resized_h = int(w*resize_ratio),int(h*resize_ratio)
mask_resized = torch.nn.functional.interpolate(torch.from_numpy(mask_np).unsqueeze(0).unsqueeze(0), (resized_w, resized_h)).squeeze()
mask = torch.zeros(w, h)
if w > resized_w:
mask[:resized_w, :resized_h] = mask_resized
else:
assert h <= resized_h
mask = mask_resized[resized_w//2-w//2: resized_w//2-w//2+w, resized_h//2-h//2: resized_h//2-h//2+h]
return mask.cpu().numpy().astype(np.uint8)
def process_mask_move_torch(
mask_list,
move_index_list,
delta_x_list = None,
delta_y_list = None,
edit_priority_list = None,
force_mask_remain = None,
resize_list = None
):
mask_list_np = [m.cpu().numpy() for m in mask_list]
priority_list = [0 for _ in range(len(mask_list_np))]
for idx, (move_index, delta_x, delta_y, priority) in enumerate(zip(move_index_list, delta_x_list, delta_y_list, edit_priority_list)):
priority_list[move_index] = priority
if resize_list is not None:
mask = resize_mask (mask_list_np[move_index], resize_list[idx])
else:
mask = mask_list_np[move_index]
mask_list_np[move_index] = move_mask(mask, delta_x = delta_x, delta_y = delta_y)
mask_list_np = stack_mask_with_priority (mask_list_np, priority_list, move_index_list) # exists blank
check_mask_overlap_numpy(*mask_list_np)
mask_list_np, mask_remain = process_remain_mask(mask_list_np, move_index_list,force_mask_remain)
mask_list = [torch.from_numpy(m).to( dtype=torch.uint8) for m in mask_list_np]
mask_remain = torch.from_numpy(mask_remain).to(dtype=torch.uint8)
return mask_list, mask_remain
def process_mask_remove_torch(mask_list, remove_idx):
mask_list_np = [m.cpu().numpy() for m in mask_list]
mask_list_np[remove_idx] = np.zeros_like(mask_list_np[0])
mask_list_np, mask_remain = process_remain_mask(mask_list_np)
mask_list = [torch.from_numpy(m).to(dtype=torch.uint8) for m in mask_list_np]
mask_remain = torch.from_numpy(mask_remain).to(dtype=torch.uint8)
return mask_list, mask_remain
def get_mask_difference_torch(mask_list1, mask_list2):
assert len(mask_list1) == len(mask_list2)
mask_diff = torch.zeros_like(mask_list1[0])
for mask1 , mask2 in zip(mask_list1, mask_list2):
diff = ((mask1.float() - mask2.float())!=0).to(torch.uint8)
mask_diff = mask_union_torch(mask_diff, diff)
return mask_diff
def save_mask_list_to_npys(folder, mask_list, mask_label_list, name = "mask"):
for midx, (mask, mask_label) in enumerate(zip(mask_list, mask_label_list)):
np.save(os.path.join(folder, "{}{}_{}.npy".format(name, midx, mask_label)), mask)