Skip to content

Latest commit

 

History

History
255 lines (206 loc) · 8.37 KB

README.md

File metadata and controls

255 lines (206 loc) · 8.37 KB

glmmboot

Travis build status Codecov test coverage CRAN status

Overview

glmmboot provides a simple interface for creating non-parametric bootstrap confidence intervals using a wide set of models. The primary function is bootstrap_model, which has three primary arguments:

  • base_model: the model run on the full data as you normally would, prior to bootstrapping
  • base_data: the dataset used
  • resamples: how many bootstrap resamples you wish to perform

Another function, bootstrap_ci, converts output from bootstrap model runs into confidence intervals and p-values. By default, bootstrap_model calls bootstrap_ci.

Types of bootstrapping

For models with random effects:

  • the default (and recommended) behaviour will be to block sample over the effect with the largest entropy (generally the one with the most levels)
  • it’s also possible to specify multiple random effects to block sample over

With no random effects, performs case resampling: resamples each row with replacement.

All of these are considered non-parametric.

Requirements:

  1. the model should work with the function update, to change the data
  2. the coefficients are extractable using coef(summary(model))
  • either directly, i.e. this gives a matrix
  • or it’s a list of matrices; this includes e.g. zero-inflated models, which produce two matrices of coefficients

Parallel

It may be desired to run this package in parallel. The best way is to use the future backend, which uses future.apply::future_lapply. You do that by specifying the backend through the future::plan setup, and then setting parallelism = "future". It’s quite possible you’ll want to pass the package used to build the model to the argument future_packages. See the Quick Use vignette for more.

It’s also easy to use parallel::mclapply; again, see the Quick Use vignette.

Installation

glmmboot is on CRAN, so you can install it normally:

install.packages("glmmboot")

Or the development version:

## install.packages("devtools")
devtools::install_github("ColmanHumphrey/glmmboot")

Example: glm (no random effect)

We’ll provide a quick example using glm. First we’ll set up some data:

set.seed(15278086)
x1 <- rnorm(50)
x2 <- runif(50)

expit <- function(x){exp(x) / (1 + exp(x))}

y_mean <- expit(0.2 - 0.3 * x1 + 0.4 * x2)

y <- rbinom(50, 1, prob = y_mean)

sample_frame <- data.frame(x1 = x1, x2 = x2, y = y)

Typically this model is fit with logistic regression:

base_run <- glm(y ~ x1 + x2,
                family = binomial(link = 'logit'),
                data = sample_frame)
summary(base_run)
# 
# Call:
# glm(formula = y ~ x1 + x2, family = binomial(link = "logit"), 
#     data = sample_frame)
# 
# Deviance Residuals: 
#     Min       1Q   Median       3Q      Max  
# -1.6819  -1.2340   0.7048   0.9389   1.3213  
# 
# Coefficients:
#             Estimate Std. Error z value Pr(>|z|)
# (Intercept)  -0.1161     0.5890  -0.197    0.844
# x1           -0.5147     0.3387  -1.519    0.129
# x2            1.0933     1.0065   1.086    0.277
# 
# (Dispersion parameter for binomial family taken to be 1)
# 
#     Null deviance: 65.342  on 49  degrees of freedom
# Residual deviance: 61.944  on 47  degrees of freedom
# AIC: 67.944
# 
# Number of Fisher Scoring iterations: 4

Let’s run a bootstrap.

library(glmmboot)
boot_results <- bootstrap_model(base_model = base_run,
                                base_data = sample_frame,
                                resamples = 999)

And the results:

print(boot_results)
#               estimate boot 2.5% boot 97.5% boot p_value base p_value base 2.5%
# (Intercept) -0.1160896   -1.2295     0.9809        0.830       0.8446   -1.3010
# x1          -0.5146778   -1.1245     0.0455        0.076       0.1353   -1.1961
# x2           1.0932707   -0.7517     3.1328        0.284       0.2829   -0.9315
#             base 97.5% boot/base width
# (Intercept)     1.0688       0.9327523
# x1              0.1667       0.8584962
# x2              3.1181       0.9592352

The estimates are the same, since we just pull from the base model. The intervals are similar to the base model, although slightly narrower: typical logistic regression is fractionally conservative at N = 50.

An example with a zero-inflated model (from the glmmTMB docs):

## we'll skip this if glmmTMB not available
library(glmmTMB)

owls <- transform(Owls,
                  nest = reorder(Nest, NegPerChick),
                  ncalls = SiblingNegotiation,
                  ft = FoodTreatment)

fit_zipoisson <- glmmTMB(
    ncalls ~ (ft + ArrivalTime) * SexParent +
        offset(log(BroodSize)) + (1 | nest),
    data = owls,
    ziformula = ~1,
    family = poisson)

summary(fit_zipoisson)
#  Family: poisson  ( log )
# Formula:          
# ncalls ~ (ft + ArrivalTime) * SexParent + offset(log(BroodSize)) +  
#     (1 | nest)
# Zero inflation:          ~1
# Data: owls
# 
#      AIC      BIC   logLik deviance df.resid 
#   4015.6   4050.8  -1999.8   3999.6      591 
# 
# Random effects:
# 
# Conditional model:
#  Groups Name        Variance Std.Dev.
#  nest   (Intercept) 0.1294   0.3597  
# Number of obs: 599, groups:  nest, 27
# 
# Conditional model:
#                           Estimate Std. Error z value Pr(>|z|)    
# (Intercept)                2.53995    0.35656   7.123 1.05e-12 ***
# ftSatiated                -0.29111    0.05961  -4.884 1.04e-06 ***
# ArrivalTime               -0.06808    0.01427  -4.771 1.84e-06 ***
# SexParentMale              0.44885    0.45002   0.997    0.319    
# ftSatiated:SexParentMale   0.10473    0.07286   1.437    0.151    
# ArrivalTime:SexParentMale -0.02140    0.01835  -1.166    0.244    
# ---
# Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 
# Zero-inflation model:
#             Estimate Std. Error z value Pr(>|z|)    
# (Intercept) -1.05753    0.09412  -11.24   <2e-16 ***
# ---
# Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Let’s run the bootstrap (ignore the actual results, 3 resamples is basically meaningless - just for illustration):

zi_results <- bootstrap_model(base_model = fit_zipoisson,
                              base_data = owls,
                              resamples = 3)

print(zi_results)
# $cond
#                              estimate boot 2.5% boot 97.5% boot p_value
# (Intercept)                2.53994692    1.9197     2.9229          0.5
# ftSatiated                -0.29110639   -0.3058    -0.1889          0.5
# ArrivalTime               -0.06807809   -0.0866    -0.0392          0.5
# SexParentMale              0.44884508    0.1134     1.2690          0.5
# ftSatiated:SexParentMale   0.10472505   -0.1153     0.2804          1.0
# ArrivalTime:SexParentMale -0.02139750   -0.0527    -0.0087          0.5
#                           base p_value base 2.5% base 97.5% boot/base width
# (Intercept)                     0.0000    1.8411     3.2388       0.7177368
# ftSatiated                      0.0000   -0.4079    -0.1743       0.5002454
# ArrivalTime                     0.0000   -0.0960    -0.0401       0.8479791
# SexParentMale                   0.3186   -0.4332     1.3309       0.6550388
# ftSatiated:SexParentMale        0.1506   -0.0381     0.2475       1.3852712
# ArrivalTime:SexParentMale       0.2436   -0.0574     0.0146       0.6116518
# 
# $zi
#              estimate boot 2.5% boot 97.5% boot p_value base p_value base 2.5%
# (Intercept) -1.057534   -1.0575      -0.84          0.5            0    -1.242
#             base 97.5% boot/base width
# (Intercept)    -0.8731       0.5895082

We could also have run this with the future.apply backend:

library(future.apply)
plan("multiprocess")

zi_results <- bootstrap_model(base_model = fit_zipoisson,
                              base_data = owls,
                              resamples = 1000,
                              parallelism = "future",
                              future_packages = "glmmTMB")