-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
301 lines (264 loc) · 10 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import numpy as np
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import make_scorer
from itertools import product, chain
from abc import ABC, abstractmethod
from kmedoids import KMedoids
from scipy.spatial.distance import cdist
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.neighbors import NearestNeighbors as NN
import subm, grad
import scipy as sp
from sklearn.neighbors import KNeighborsClassifier as KNN
import os, gc
from sklearn.cluster import KMeans
from utils import Kernel, kmeanspp, bacc
from sklearn.metrics import confusion_matrix
from collections import Counter
scorer = make_scorer(bacc)
mmd = subm.MMD()
ekxs = subm.EKxs()
kxs = subm.Kxs()
dummy = subm.Dummy()
nnsubm = subm.NNSubm()
critic1 = subm.Critic(abs = True)
critic2 = subm.Critic(abs = False)
logdet1 = subm.LogDet(merge = False)
logdet2 = subm.LogDet(merge = True)
def kmeans_obj(A, X, y):
clss = sorted(set(y))
cost = 0.0
clss = sorted(set(y))
mk = A.shape[0] // len(clss)
for c, k in enumerate(clss):
idxs = np.where(y == k)[0]
D = cdist(A[c*mk:(c+1)*mk], X[idxs], 'sqeuclidean').min(axis=0)
# print(len(idxs), D.shape)
cost += D.sum()
return cost
class Summ(BaseEstimator):
def __init__(self, mk = 4, C = 10.0, gamma = 0.01, lambdaa = 0.1, gamma2 = 0.1, seed = 0, **kwargs):
self.mk = mk
self.gamma = gamma
self.gamma2 = gamma2
self.C = C
self.lambdaa = lambdaa
self.verbose = kwargs.get("verbose", False)
self.idxs = None
self.A0 = None
self.vecs = None
self.vecs_not_snapped = None ## not snapped ones if applicable
self.seed = seed
# self.clf = KNN(n_neighbors=1, n_jobs = 1)
self.clf = SVC(gamma = self.gamma, kernel = "rbf", C = self.C,
class_weight = "balanced", random_state = seed, verbose = False)
def __str__(self):
return "{}(gamma={}, gamma2={}, C={}, lambda={}, seed={}, m={})".format(
self.__class__.__name__, self.gamma, self.gamma2, self.C, self.lambdaa, self.seed, self.mk)
# @abstractmethod
def obj(self, A, X, y):
raise NotImplementedError("must implement")
def _init(self, X, y, init = "greedy", **kwargs):
clss = np.array(sorted(set(y)), dtype = np.uint8)
idxs = []
vecs = []
if init == "kmeans":
for c, k in enumerate(clss):
idxs_c = np.where(y == k)[0]
kmeans = KMeans(n_clusters = self.mk, init = "k-means++", random_state = self.seed)
kmeans.fit(X[idxs_c])
nn = NN(n_neighbors = 1, algorithm = 'auto', metric = "euclidean")
nn.fit(X[idxs_c])
vecs.append(kmeans.cluster_centers_)
idxs.append(idxs_c[nn.kneighbors(kmeans.cluster_centers_)[1].squeeze().tolist()])
vecs = np.concatenate(vecs, axis = 0)
elif init == "greedy":
K1 = Kernel.create(X, verbose = False, metric = 'rbf', gamma = self.gamma)
# K2 = Kernel.create(X, verbose = False, metric = 'rbf', gamma = self.gamma2)
assert K1().shape[0] == X.shape[0] == len(y), (K1().shape, X.shape, y.shape)
# print("kernels", K1, K2)
print(self.diff, self.gamma, self.lambdaa, self.C)
diff = {"ekxs": ekxs, "dummy": dummy, "data": mmd, "kxs": kxs}.get(self.diff.lower(), dummy)
# print(diff)
S = subm.greedy_maximize_labels(mmd, diff, V = np.arange(len(y)).tolist(), y = y,
verbose = False, k = self.mk, lambdaa = -self.lambdaa, delF_args = {"K": K1}, delG_args = {"K": K1})
for c in clss:
idxs.append(S[c])
idxs = np.array(idxs, dtype = np.uint32).flatten().tolist()
return idxs, vecs
def predict(self, X):
try:
return self.clf.predict(X)
except:
return np.zeros(len(X))
def score(self, X, y, **kwargs):
return bacc(y, self.predict(X), **kwargs)
class KMeansSumm(Summ):
def fit(self, X, y, **kwargs):
if self.verbose:
print("fitting", self)
self.idxs, self.vecs_not_snapped = self._init(X, y, "kmeans")
self.vecs = X[self.idxs]
cc = Counter(y[self.idxs])
assert set(cc.values()) == set({self.mk})
if self.verbose:
print("fitted KMeans: seed = {}, ".format(self.seed), cc)
self.clf.fit(self.vecs, y[self.idxs])
return self
def obj(self, A, X, y):
return kmeans_obj(A, X, y)
class KMedoidsSumm(Summ):
def fit(self, X, y, **kwargs):
if self.verbose:
print("fitting", self)
clss = sorted(set(y))
meds = []
for c, k in enumerate(clss):
idxs_c = np.where(y == k)[0]
kmpp_idxs = kmeanspp(X[idxs_c], self.mk, seed = self.seed)
kmed = KMedoids(self.mk, init = kmpp_idxs)
kmed.fit(X[idxs_c], dist = False)
meds.append(idxs_c[kmed.medoids].tolist())
self.idxs = np.concatenate(meds, axis = 0)
self.vecs = X[self.idxs]
cc = Counter(y[self.idxs])
assert set(cc.values()) == set({self.mk})
if self.verbose:
print("fitted KMedoids seed={},".format(self.seed), cc)
self.clf.fit(self.vecs, y[self.idxs])
return self
def obj(self, A, X, y):
return kmeans_obj(A, X, y)
class MMDGreedySumm(Summ):
def __init__(self, mk = 4, C = 10.0, gamma = 0.1, gamma2 = 0.01, lambdaa = 0.1, diff = "data", **kwargs):
super().__init__(mk = mk, C = C, gamma = gamma, gamma2 = gamma2, lambdaa = lambdaa, **kwargs)
self.diff = diff
def fit(self, X, y, **kwargs):
if self.verbose:
print("fitting", self)
self.idxs, _ = self._init(X, y, init = "greedy", diff = self.diff)
cc = Counter(y[self.idxs])
assert set(cc.values()) == set({self.mk}), self.idxs
if self.verbose:
print("fitted MMD-Greedy-", self.diff, cc)
self.vecs = X[self.idxs]
self.clf.fit(self.vecs, y[self.idxs])
return self
def obj(self, A, X, y):
return grad.mmd_cost_labels(A.flatten(), X, y, self.gamma, self.gamma2, self.lambdaa, self.diff)
class NNSumm(Summ):
def fit(self, X, y, **kwargs):
if self.verbose:
print("fitting", self)
V = np.arange(len(y)).tolist()
W = sp.spatial.distance.cdist(X, X, 'euclidean')
W = W.max() - W
S = subm.greedy_maximize_labels(nnsubm, dummy,
V = V, y = y, k = self.mk, lambdaa = 0.0, W = W)
self.idxs = []
# print(S)
for k in sorted(set(y)):
self.idxs.append(S[k])
self.idxs = np.array(self.idxs).flatten().tolist()
cc = Counter(y[self.idxs])
assert set(cc.values()) == set({self.mk}), self.idxs
if self.verbose:
print("fitted NN-Subm", cc)
self.vecs = X[self.idxs]
self.clf.fit(self.vecs, y[self.idxs])
return self
def obj(self, A, X, y):
W = sp.spatial.distance.cdist(X, A, 'euclidean')
W = W.max() - W
cost = 0.0
for c, k in enumerate(sorted(set(y))):
idxs = np.where(y == k)[0]
# print(idxs)
cost += W[idxs, :].max(axis = 1).sum()
return cost
class MMDcSumm(Summ):
def __init__(self, mk = 4, C = 10.0, gamma = 0.1, original_critic = True, **kwargs):
super().__init__(mk = mk, C = C, gamma = gamma, **kwargs)
self.original_critic = original_critic
def fit(self, X, y, **kwargs):
if self.verbose:
print("fitting", self)
clss = sorted(set(y))
V = np.arange(len(y)).tolist()
s = np.arange(len(y)).tolist()
K = kwargs.get("K", Kernel.create(X, verbose = False, metric = 'rbf', gamma = self.gamma))
K.regularize(1e-4)
ps = mmd.greedy_maximize(candidates = s, V = V, k = (self.mk * len(clss)) // 2, verbose = False, K = K)
s = [i for i in V if i not in ps]
reg_critic = (critic1 + logdet1) if self.original_critic else (critic2 + logdet2)
cs = reg_critic.greedy_maximize(V = V, candidates = s, k = (self.mk * len(clss)) // 2, K = K, P = ps)
self.idxs = ps + cs
self.vecs = X[self.idxs]
if self.verbose:
print("fitted MMDCritic, ", Counter(y[self.idxs]))
try:
self.clf.fit(self.vecs, y[self.idxs])
except Exception as ex:
print(ex)
return self
def obj(self, A, X, y):
return grad.mmd_cost(A.flatten(), X, self.gamma)
class MMDGradSumm(Summ):
def __init__(self, mk = 4, C = 10.0, gamma = 0.1, gamma2 = 0.01, lambdaa = 0.1, seed = 0,
diff = "data", init = "greedy", **kwargs):
super().__init__(mk = mk, C = C, gamma = gamma, gamma2 = gamma2, lambdaa = lambdaa, seed = seed, **kwargs)
self.diff = diff
self.init = init
def fit(self, X, y, **kwargs):
if self.verbose:
print("fitting", self, self.diff)
n, d = X.shape
clss = np.array(sorted(set(y)), dtype = np.uint8)
## optimize this later
idxs, _ = self._init(X, y, init = self.init, **kwargs)
A0 = X[idxs]
opt = sp.optimize.minimize(grad.mmd_cost_grad_labels, A0.flatten(),
args = (X, y, self.gamma, self.gamma, self.lambdaa, self.diff),
method='L-BFGS-B', jac = True, tol = 1e-6,
options={'maxiter': 100, 'disp': False})
self.vecs_not_snapped = opt.x.reshape(self.mk * len(clss), d)
# print(self.vecs_not_snapped)
idxs = []
for c, k in enumerate(clss):
ixs_c = np.where(y == k)[0]
nn = NN(n_neighbors = 1, algorithm = 'auto', metric = "euclidean")
nn.fit(X[ixs_c])
idxs.append(ixs_c[nn.kneighbors(self.vecs_not_snapped[c*self.mk: (c+1)*self.mk])[1].squeeze().tolist()])
self.idxs = np.array(idxs).flatten().tolist()
cc = Counter(y[self.idxs])
assert set(cc.values()) == set({self.mk})
if self.verbose:
print("fitted MMD-Grad-",self.diff, cc, self.idxs)
self.vecs = X[self.idxs]
self.A0 = A0
self.clf.fit(self.vecs, y[self.idxs])
return self
def obj(self, A, X, y):
return grad.mmd_cost_labels(A.flatten(), X, y, self.gamma, self.gamma, self.lambdaa, self.diff)
def get_model(name, **kwargs):
MODELS = { "kmeans": KMeansSumm(**kwargs),
"kmedoids": KMedoidsSumm(**kwargs),
"mmd-critic": MMDcSumm(original_critic = True, **kwargs),
"mmd-critic+": MMDcSumm(original_critic = False, **kwargs), ## not used in paper
"greedy": MMDGreedySumm(diff = "dummy", **kwargs), ## not used in paper
"mmd-diff-greedy": MMDGreedySumm(diff = "data", **kwargs),
"mmd-exks-greedy": MMDGreedySumm(diff = "EKxs", **kwargs), ## not used in paper
"mmd-div-greedy": MMDGreedySumm(diff = "Kxs", **kwargs),
"mmd-diff-grad": MMDGradSumm(diff = "data", **kwargs),
"mmd-params-grad": MMDGradSumm(diff = "params", **kwargs), ## not used in paper
"mmd-div-grad": MMDGradSumm(diff = "EKxs", **kwargs),
"nn-comp": NNSumm(**kwargs)
}
return MODELS[name]
from sklearn.utils.estimator_checks import check_estimator
def main():
for M in [MMDcSumm, MMDGreedySumm, KMeansSumm, KMedoidsSumm, MMDGradSumm]:
check_estimator(M)
if __name__ == '__main__':
main()