-
Notifications
You must be signed in to change notification settings - Fork 0
/
MLflow_Scikit_Learn.py
82 lines (55 loc) · 2.15 KB
/
MLflow_Scikit_Learn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# The data set used in this example is from http://archive.ics.uci.edu/ml/datasets/Wine+Quality
# P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.
# Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.
import os
import warnings
import sys
import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import train_test_split
from sklearn.linear_model import ElasticNet
import mlflow
import mlflow.sklearn
np.random.seed(40)
warnings.filterwarnings("ignore")
# # Setup Experiment Tracker
tracking_uri='file:///root/mlflow'
mlflow.set_tracking_uri(tracking_uri)
experiment_name = 'wine'
mlflow.set_experiment(experiment_name)
# # Import Training Data
# Read the wine-quality csv file (make sure you're running this from the root of MLflow!)
#wine_path = './datasets/wine-quality.csv'
wine_path = './winequality-white.csv'
data = pd.read_csv(wine_path)
# Split the data into training and test sets. (0.75, 0.25) split.
train, test = train_test_split(data)
# The predicted column is "quality" which is a scalar from [3, 9]
train_x = train.drop(["quality"], axis=1)
test_x = test.drop(["quality"], axis=1)
train_y = train[["quality"]]
test_y = test[["quality"]]
# # Start Training Run
alpha = 0.20
l1_ratio = 0.20
with mlflow.start_run() as run:
lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42)
lr.fit(train_x, train_y)
predicted_qualities = lr.predict(test_x)
rmse = np.sqrt(mean_squared_error(test_y, predicted_qualities))
mae = mean_absolute_error(test_y, predicted_qualities)
r2 = r2_score(test_y, predicted_qualities)
print("Elasticnet model (alpha=%f, l1_ratio=%f):" % (alpha, l1_ratio))
print(" RMSE: %s" % rmse)
print(" MAE: %s" % mae)
print(" R2: %s" % r2)
# Log Parameters
mlflow.log_param("alpha", alpha)
mlflow.log_param("l1_ratio", l1_ratio)
# Log Metrics
mlflow.log_metric("rmse", rmse)
mlflow.log_metric("r2", r2)
mlflow.log_metric("mae", mae)
# Log Model
mlflow.sklearn.log_model(lr, "model")