-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeneration.py
171 lines (150 loc) · 5.84 KB
/
generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import typing as tp
import k_diffusion as K
import numpy as np
import torch
def generate_diffusion_cond(
model,
steps: int = 250,
cfg_scale=6,
conditioning: dict = None,
conditioning_tensors: tp.Optional[dict] = None,
negative_conditioning: dict = None,
negative_conditioning_tensors: tp.Optional[dict] = None,
batch_size: int = 1,
sample_size: int = 2097152,
sample_rate: int = 48000,
seed: int = -1,
device: str = "cuda",
init_audio: tp.Optional[tp.Tuple[int, torch.Tensor]] = None,
init_noise_level: float = 1.0,
mask_args: dict = None,
return_latents=False,
**sampler_kwargs,
) -> torch.Tensor:
"""
Generate audio from a prompt using a diffusion model.
Args:
model: The diffusion model to use for generation.
steps: The number of diffusion steps to use.
cfg_scale: Classifier-free guidance scale
conditioning: A dictionary of conditioning parameters to use for generation.
conditioning_tensors: A dictionary of precomputed conditioning tensors to use for generation.
batch_size: The batch size to use for generation.
sample_size: The length of the audio to generate, in samples.
sample_rate: The sample rate of the audio to generate (Deprecated, now pulled from the model directly)
seed: The random seed to use for generation, or -1 to use a random seed.
device: The device to use for generation.
init_audio: A tuple of (sample_rate, audio) to use as the initial audio for generation.
init_noise_level: The noise level to use when generating from an initial audio sample.
return_latents: Whether to return the latents used for generation instead of the decoded audio.
**sampler_kwargs: Additional keyword arguments to pass to the sampler.
"""
# If this is latent diffusion, change sample_size instead to the downsampled latent size
if model.pretransform is not None:
sample_size = sample_size // model.pretransform.downsampling_ratio
# Seed
# The user can explicitly set the seed to deterministically generate the same output. Otherwise, use a random seed.
seed = seed if seed != -1 else np.random.randint(0, 2**32 - 1)
print(seed)
torch.manual_seed(seed)
# Define the initial noise immediately after setting the seed
noise = torch.randn([batch_size, model.io_channels, sample_size], device=device)
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.benchmark = False
# Conditioning
assert (
conditioning is not None or conditioning_tensors is not None
), "Must provide either conditioning or conditioning_tensors"
if conditioning_tensors is None:
conditioning_tensors = model.conditioner(conditioning, device)
conditioning_inputs = model.get_conditioning_inputs(conditioning_tensors)
negative_conditioning_tensors = {}
# The user did not supply any initial audio for inpainting or variation. Generate new output from scratch.
init_audio = None
mask = None
model_dtype = next(model.model.parameters()).dtype
noise = noise.type(model_dtype)
conditioning_inputs = {
k: v.type(model_dtype) if v is not None else v
for k, v in conditioning_inputs.items()
}
# Now the generative AI part:
# k-diffusion denoising process go!
diff_objective = model.diffusion_objective
if diff_objective == "v":
# k-diffusion denoising process go!
sampled = sample_k(
model.model,
noise,
init_audio,
mask,
steps,
**sampler_kwargs,
**conditioning_inputs,
**negative_conditioning_tensors,
cfg_scale=cfg_scale,
batch_cfg=True,
rescale_cfg=True,
device=device,
)
else:
raise NotImplementedError
# v-diffusion:
# sampled = sample(model.model, noise, steps, 0, **conditioning_tensors, embedding_scale=cfg_scale)
del noise
del conditioning_tensors
del conditioning_inputs
torch.cuda.empty_cache()
# Denoising process done.
# If this is latent diffusion, decode latents back into audio
if model.pretransform is not None and not return_latents:
# cast sampled latents to pretransform dtype
sampled = sampled.to(next(model.pretransform.parameters()).dtype)
sampled = model.pretransform.decode(sampled)
# Return audio
return sampled
# Uses k-diffusion from https://github.com/crowsonkb/k-diffusion
# init_data is init_audio as latents (if this is latent diffusion)
# For sampling, set both init_data and mask to None
# For variations, set init_data
# For inpainting, set both init_data & mask
def sample_k(
model_fn,
noise,
init_data=None,
mask=None,
steps=100,
sampler_type="dpmpp-2m-sde",
sigma_min=0.5,
sigma_max=50,
rho=1.0,
device="cuda",
callback=None,
cond_fn=None,
**extra_args,
):
denoiser = K.external.VDenoiser(model_fn)
# Make the list of sigmas. Sigma values are scalars related to the amount of noise each denoising step has
sigmas = K.sampling.get_sigmas_polyexponential(
steps, sigma_min, sigma_max, rho, device=device
)
# Scale the initial noise by sigma
noise = noise * sigmas[0]
wrapped_callback = callback
# SAMPLING
# set the initial latent to noise
x = noise
with torch.cuda.amp.autocast():
if sampler_type == "dpmpp-2m-sde":
return K.sampling.sample_dpmpp_2m_sde(
denoiser,
x,
sigmas,
disable=False,
callback=wrapped_callback,
extra_args=extra_args,
)
else:
raise NotImplementedError