-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsearch.py
191 lines (151 loc) · 7.26 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import pandas as pd
import numpy as np
from scipy import stats
import os
import features.config as fconf
from features.video import load_C3D_features
from features.image import load_ResNet152_features
from features.audio import load_VGGish_features
from features.text import load_GloVe_features
from target_augmentation import add_position_delta, calculate_alpha_and_memorability
from train import split_training, build_matrixes, get_predictions, train_model
PREDICTIONS_DIR = "predictions"
def main(train_data, test_data, is_short_term, feature, seed, aggregate_with=np.median):
np.random.seed(seed)
target = "m_75" if is_short_term else "part_2_scores"
if "glove" == feature:
model_type = "gru"
elif "resnet152" == feature:
model_type = "svr"
elif "c3d" == feature:
model_type = "svr"
elif "vggish" == feature:
model_type = "bayesian_ridge"
model_name = f"{feature}_{model_type}"
model_parameters = {
"random_seed": seed
}
if model_type == "gru":
model_parameters["num_epochs"] = 150
model_parameters["hidden_dim"] = 64
model_parameters["learning_rate"] = 1e-3
model_parameters["batch_size"] = 64
model_parameters["gru_units"] = 64
model_parameters["gru_dropout"] = 0.8
# Data prep
training_data, validation_data = split_training(train_data)
features_train, targets_train, video_ids_train = build_matrixes(
training_data, target_name=target, feature_name=feature)
features_valid, targets_valid, video_ids_valid = build_matrixes(
validation_data, target_name=target, feature_name=feature)
features_test, targets_test, video_ids_test = build_matrixes(
test_data, target_name=target, feature_name=feature, is_test=True)
# Training
model = train_model(model_type, features_train, targets_train,
features_valid, targets_valid, model_parameters)
# Evaluation
pred_train, actual_train, vid_train = get_predictions(
model_type, model, features_train, targets_train, video_ids_train, aggregate_with=aggregate_with)
pred_valid, actual_valid, vid_valid = get_predictions(
model_type, model, features_valid, targets_valid, video_ids_valid, aggregate_with=aggregate_with)
pred_test, actual_test, vid_test = get_predictions(
model_type, model, features_test, targets_test, video_ids_test, aggregate_with=aggregate_with)
valid_spearman_rank, _ = stats.spearmanr(actual_valid, pred_valid)
predictions = np.concatenate([pred_train, pred_valid, pred_test])
actuals = np.concatenate([actual_train, actual_valid, actual_test])
video_ids = np.concatenate([vid_train, vid_valid, vid_test])
in_training_set = np.array(np.concatenate(
[np.ones(len(pred_train)), np.zeros(len(pred_valid + pred_test))]), dtype=bool)
default_prediction = np.mean(predictions)
for vid in train_data.index:
if vid not in video_ids:
video_ids = np.append(video_ids, vid)
predictions = np.append(predictions, default_prediction)
in_training_set = np.append(
in_training_set, vid in training_data.index)
actuals = np.append(actuals, train_data.loc[vid][target])
for vid in test_data.index:
if vid not in video_ids:
video_ids = np.append(video_ids, vid)
predictions = np.append(predictions, default_prediction)
in_training_set = np.append(in_training_set, False)
actuals = np.append(actuals, np.nan)
# Save predictions
save_predictions(model_name, video_ids, actuals, predictions, in_training_set,
model_parameters, is_short_term, model_type, valid_spearman_rank
)
def add_features_to_df(dfs, set_names, label, feature_dir, load_func):
for df, set_name in zip(dfs, set_names):
df[label] = load_func(
df.index, fconf.set_dataset(set_name, feature_dir))
def save_predictions(model_name, video_ids, actuals, predictions, in_training_set,
model_parameters, is_short_term, model_type, valid_spearman_rank,
predictions_dir=PREDICTIONS_DIR):
if not os.path.exists(predictions_dir):
os.mkdir(predictions_dir)
model_data_dir = f"{predictions_dir}/model_data.csv"
if not os.path.exists(model_data_dir):
model_data = pd.DataFrame(columns=["name", "seed", "is_short_term", "validation_spearman_rank", "type",
"feature", "predictions", "notes", "parameters"])
else:
model_data = pd.read_csv(model_data_dir)
model_dir = f"{predictions_dir}/{model_name}"
if not os.path.exists(model_dir):
os.mkdir(model_dir)
pred_filename = f"{model_dir}/{'st' if is_short_term else 'lt'}-{model_parameters['random_seed']}.csv"
pred_data = pd.DataFrame({
"video_id": video_ids,
"prediction": predictions,
"actual": actuals,
"in_training_set": in_training_set
}).sort_values("video_id")
pred_data.to_csv(pred_filename, index=False)
model_info = {
"feature": feature,
"seed": model_parameters["random_seed"],
"is_short_term": is_short_term,
"validation_spearman_rank": np.around(valid_spearman_rank, 4),
"name": model_name,
"type": model_type,
"predictions": pred_filename,
"notes": "",
"parameters": model_parameters
}
model_data.append(model_info, ignore_index=True).to_csv(
model_data_dir, index=False)
print("####################################################")
print(
f"SEED {model_parameters['random_seed']}, ST? {is_short_term}, feature {feature}")
print("SPEARMAN: ", np.around(valid_spearman_rank, 4))
print("Saved model info and predictions: ", model_info)
print("####################################################")
if __name__ == "__main__":
testing_set_data = pd.read_csv(
"testing_set/test_urls.csv").set_index("video_id")
training_set_data = pd.read_csv(
"training_set/scores_v2.csv").set_index("video_id")
dfs = [testing_set_data, training_set_data]
set_names = ["testing_set", "training_set"]
add_features_to_df(dfs, set_names, "glove",
fconf.GLOVE_FEATURE_DIR, load_GloVe_features)
add_features_to_df(dfs, set_names, "resnet152",
fconf.RESNET152_FEATURE_DIR, load_ResNet152_features)
add_features_to_df(dfs, set_names, "c3d",
fconf.C3D_FEATURE_DIR, load_C3D_features)
add_features_to_df(dfs, set_names, "vggish",
fconf.VGGISH_FEATURE_DIR, load_VGGish_features)
train_data = training_set_data
test_data = testing_set_data
# Target augmentation
annotations = add_position_delta(pd.read_csv(
"training_set/short_term_annotations_v2.csv"))
big_t = int(np.around(np.mean(annotations["t"])))
label = f"m_{big_t}"
_alpha, adjusted_score = calculate_alpha_and_memorability(
annotations, T=big_t)
train_data[label] = adjusted_score
test_data[label] = np.nan
for is_short_term in [True, False]:
for seed in [42, 1, 9, 8, 7]:
for feature in ["glove", "vggish", "c3d", "resnet152"]:
main(train_data, test_data, is_short_term, feature, seed)