-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathZlcm.v
255 lines (237 loc) · 7.47 KB
/
Zlcm.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
(*
Copyright © 2009 Valentin Blot
Permission is hereby granted, free of charge, to any person obtaining a copy of
this proof and associated documentation files (the "Proof"), to deal in
the Proof without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Proof, and to permit persons to whom the Proof is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Proof.
THE PROOF IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE PROOF OR THE USE OR OTHER DEALINGS IN THE PROOF.
*)
Require Import CRings Zring.
Section Zgcd_lin.
Lemma Z_dec : forall x y : Z_as_CRing, x [=] y or x [#] y.
Proof.
intros x y; case (Z.eq_dec x y).
left; assumption.
right; assumption.
Qed.
Lemma Zgcd_lin : forall a b c, (Z.abs c * Zgcd a b = Zgcd (c * a) (c * b))%Z.
Proof.
intros a b c.
case (Z.eq_dec a 0).
intro H; rewrite H; rewrite Zmult_0_r, Zgcd_zero_lft, Zgcd_zero_lft; apply Zabs_mult_compat.
intro Ha; case (Z.eq_dec b 0).
intro H; rewrite H; rewrite Zmult_0_r, Zgcd_zero_rht, Zgcd_zero_rht; apply Zabs_mult_compat.
intro Hb; case (Z.eq_dec c 0).
intro H; rewrite H; rewrite Zmult_0_l, Zmult_0_l, Zmult_0_l, Zgcd_zero_lft; reflexivity.
intro Hc; apply Zdivides_antisymm.
rewrite <- (Zmult_0_r (Z.abs c)).
apply Zmult_pos_mon_lt_lft.
apply Z.lt_gt.
apply Zgcd_pos.
left; assumption.
destruct c; [destruct Hc| |]; reflexivity.
apply Z.lt_gt.
apply Zgcd_pos.
left.
intro H0; destruct (Zmult_zero_div _ _ H0).
destruct Hc; assumption.
destruct Ha; assumption.
apply Zdiv_gcd_elim.
apply Zdivides_mult_elim.
apply Zdivides_abs_elim_lft.
apply Zdivides_ref.
apply Zgcd_is_divisor_lft.
apply Zdivides_mult_elim.
apply Zdivides_abs_elim_lft.
apply Zdivides_ref.
apply Zgcd_is_divisor_rht.
cut (forall c : positive, Zdivides (Zgcd (c * a) (c * b)) (Z.abs c * Zgcd a b)).
intro H; case c.
simpl; rewrite Zgcd_zero_lft; apply Zdivides_ref.
apply H.
intro p; rewrite Zgcd_abs.
rewrite <- Zabs_mult_compat, <- Zabs_mult_compat.
simpl (Z.abs (Zneg p)).
assert ((p:Z) = Z.abs p).
reflexivity.
rewrite H0; clear H0.
rewrite Zabs_mult_compat, Zabs_mult_compat.
rewrite <- Zgcd_abs.
apply H.
clear c Hc; intro c.
rewrite (Zgcd_lin_comb a b).
rewrite Zmult_plus_distr_r.
simpl (Z.abs c).
rewrite Zmult_assoc, Zmult_assoc.
rewrite (Zmult_comm c (Zgcd_coeff_a a b)).
rewrite (Zmult_comm c (Zgcd_coeff_b a b)).
rewrite <- Zmult_assoc, <- Zmult_assoc.
apply Zdivides_plus_elim.
apply Zdivides_mult_elim_lft.
apply Zgcd_is_divisor_lft.
apply Zdivides_mult_elim_lft.
apply Zgcd_is_divisor_rht.
Qed.
End Zgcd_lin.
Definition Zlcm (a b : Z_as_CRing) : Z_as_CRing := Z.div (a [*] b) (Zgcd a b).
Lemma Zlcm_specl : forall a b : Z_as_CRing, Zdivides a (Zlcm a b).
Proof.
intros a b.
unfold Zlcm.
case (Z.eq_dec (Zgcd a b) ([0]:Z_as_CRing)).
intro H; rewrite H; simpl.
rewrite Zdiv_0_r.
apply Zdivides_zero_rht.
intro H; rewrite -> (Zgcd_div_mult_rht a b) at 1; [|assumption].
simpl.
rewrite Zmult_assoc.
rewrite Z_div_mult_full; [|assumption].
apply Zdivides_mult_rht.
Qed.
Lemma Zlcm_specr : forall a b : Z_as_CRing, Zdivides b (Zlcm a b).
Proof.
intros a b.
unfold Zlcm.
case (Z.eq_dec (Zgcd a b) ([0]:Z_as_CRing)).
intro H; rewrite H; simpl.
rewrite Zdiv_0_r.
apply Zdivides_zero_rht.
intro H; rewrite -> (Zgcd_div_mult_lft a b) at 1; [|assumption].
simpl.
rewrite Zmult_comm.
rewrite Zmult_assoc.
rewrite Z_div_mult_full; [|assumption].
apply Zdivides_mult_rht.
Qed.
Lemma Zlcm_spec : forall a b c : Z_as_CRing, Zdivides a c -> Zdivides b c -> Zdivides (Zlcm a b) c.
Proof.
intros a b c Hac Hbc; unfold Zlcm; simpl.
case (Z.eq_dec (Zgcd a b) ([0]:Z_as_CRing)).
intro H; rewrite H; simpl.
destruct (Zgcd_zero _ _ H).
rewrite H0 in Hac; clear H H0 H1.
rewrite Zdiv_0_r; assumption.
case (Z.eq_dec c ([0]:Z_as_CRing)).
intro Hc; rewrite Hc.
intro Hap; apply Zdivides_zero_rht.
intros Hc Hap.
apply Zdivides_abs_intro_rht.
rewrite <- (Zmult_1_r (Z.abs c)).
rewrite <- (Zgcd_div_gcd_1 a b); [|assumption].
rewrite Zgcd_lin.
apply Zdiv_gcd_elim.
cut (a * b / Zgcd a b = b * (a / Zgcd a b))%Z.
intro H; rewrite H; clear H.
apply Zdivides_mult_cancel_rht.
assumption.
rewrite Zmult_comm.
apply (Zmult_reg_r _ _ (Zgcd a b) Hap).
rewrite <- Zmult_assoc.
rewrite <- (Zgcd_div_mult_lft _ _ Hap).
rewrite Zmult_comm.
rewrite <- (Z_div_exact_full_2 _ _ Hap).
reflexivity.
apply Zmod0_Zdivides.
apply Hap.
apply Zdivides_mult_elim_lft.
apply Zgcd_is_divisor_lft.
cut (a * b / Zgcd a b = a * (b / Zgcd a b))%Z.
intro H; rewrite H; clear H.
apply Zdivides_mult_cancel_rht.
assumption.
apply (Zmult_reg_r _ _ (Zgcd a b) Hap).
rewrite <- Zmult_assoc.
rewrite <- (Zgcd_div_mult_rht _ _ Hap).
rewrite Zmult_comm.
rewrite <- (Z_div_exact_full_2 _ _ Hap).
reflexivity.
apply Zmod0_Zdivides.
apply Hap.
apply Zdivides_mult_elim_lft.
apply Zgcd_is_divisor_rht.
Qed.
Lemma Zlcm_zero : forall p q, Zlcm p q [=] [0] -> p [=] [0] or q [=] [0].
Proof.
intros p q; unfold Zlcm; intro Heq.
case (Z.eq_dec p ([0]:Z_as_CRing)).
left; assumption.
intro Happ; right.
simpl in *.
unfold ap_Z in Happ.
apply (Zmult_integral_l _ _ Happ).
rewrite Zmult_comm.
revert Heq.
assert (Zgcd p q <> 0%Z).
intro H; destruct Happ; apply (Zgcd_zero _ _ H).
rewrite -> (Zgcd_div_mult_lft p q) at 1; [|assumption].
rewrite (Zmult_comm (p / Zgcd p q)).
rewrite <- Zmult_assoc.
rewrite Zdiv_mult_cancel_lft; [|assumption].
intro Heq.
rewrite (Zgcd_div_mult_lft p q); [|assumption].
rewrite <- Zmult_assoc, (Zmult_comm _ q), Zmult_assoc.
rewrite Heq, Zmult_0_l; reflexivity.
Qed.
Fixpoint Zlcm_gen (l : list Z_as_CRing) : Z_as_CRing :=
match l with
| nil => [1]
| h::q => Zlcm h (Zlcm_gen q)
end.
Lemma Zlcm_gen_spec : forall l x, In x l -> Zdivides x (Zlcm_gen l).
Proof.
induction l.
intros x Hin; destruct Hin.
intros x Hin; destruct Hin.
rewrite <- H; clear H.
apply Zlcm_specl.
fold (In x l) in H.
simpl.
apply (Zdivides_trans _ _ _ (IHl _ H)).
apply Zlcm_specr.
Qed.
Lemma Zlcm_gen_spec2 : forall l x, (forall y, In y l -> Zdivides y x) -> Zdivides (Zlcm_gen l) x.
Proof.
induction l.
intros; apply Zdivides_one.
intros x H; apply Zlcm_spec.
apply H; left; reflexivity.
fold (Zlcm_gen l).
apply IHl.
intros y Hin; apply H.
right; assumption.
Qed.
Lemma Zdivides_spec : forall (a b : Z), Zdivides a b -> (a * (b / a) = b)%Z.
Proof.
intros a b Hdiv.
case (Z.eq_dec a 0).
intro H; rewrite H; simpl.
symmetry; apply Zdivides_zero_lft; rewrite <- H; assumption.
intro Hap.
rewrite <- Z_div_exact_full_2.
reflexivity.
assumption.
case (Z.eq_dec a 0).
now intro H; rewrite H in Hap.
intro H; clear H.
apply Zmod0_Zdivides; assumption.
Qed.
Lemma Zlcm_gen_nz : forall l, (forall x, In x l -> x [#] [0]) -> Zlcm_gen l [#] [0].
Proof.
induction l.
intro; intro; discriminate.
simpl.
intros H1 H2; simpl.
destruct (Zlcm_zero a (Zlcm_gen l) H2).
apply (H1 a); [left; reflexivity|assumption].
destruct IHl; [|assumption].
intros; apply H1; right; assumption.
Qed.