-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathsampler.pde
181 lines (143 loc) · 5.62 KB
/
sampler.pde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
class Sampler implements AudioListener
{
private float[] left;
private float[] right;
Sampler() {
left = null;
right = null;
}
synchronized void samples(float[] sampleBuffer) {
left = sampleBuffer;
process();
}
synchronized void samples(float[] sampleBufferLeft, float[] sampleBufferRight) {
left = sampleBufferLeft;
right = sampleBufferRight;
// Apply balance to sample buffer storing in left mono buffer
for ( int i = 0; i < bufferSize; i++ ) {
int balanceValue = (int)sliderBalance.value();
if ( balanceValue > 0 ) {
float balancePercent = (100 - balanceValue) / 100.0;
left[i] = (left[i] / 2f * balancePercent) + right[i] / 2f;
} else if ( balanceValue < 0 ) {
float balancePercent = (100 - balanceValue * -1) / 100.0;
left[i] = left[i] / 2f + (right[i] / 2f * balancePercent);
} else {
left[i] = (left[i] + right[i]) / 2f;
}
}
process();
}
void process() {
if ( frameNumber < frames -1 ) {
// need to apply the window transform before we zeropad
window.transform(left); // add window to samples
//fft.window(FFT.COSINE);
arrayCopy(left, 0, buffer, 0, left.length);
if ( audio.isPlaying() ) {
frameNumber++;
analyze();
outputMIDINotes();
}
} else {
audio.pause();
closeMIDINotes();
}
}
void analyze() {
fft.forward(buffer); // run fft on the buffer
//smoother.apply(fft); // run the smoother on the fft spectra
float[] binDistance = new float[fftSize];
float[] freq = new float[fftSize];
float freqLowRange = octaveLowRange(0);
float freqHighRange = octaveHighRange(7);
for (int k = 0; k < fftSize; k++) {
freq[k] = k / (float)fftBufferSize * audio.sampleRate();
// skip FFT bins that lay outside of octaves 0-9
if ( freq[k] < freqLowRange || freq[k] > freqHighRange ) { continue; }
// Calculate fft bin distance and apply weighting to spectrum
float closestFreq = pitchToFreq(freqToPitch(freq[k])); // Rounds FFT frequency to closest semitone frequency
boolean filterFreq = false;
// Filter out frequncies from disabled octaves
for ( int i = 0; i < 8; i ++ ) {
if ( !OCTAVE_TOGGLE[i] ) {
if ( closestFreq >= octaveLowRange(i) && closestFreq <= octaveHighRange(i) ) {
filterFreq = true;
}
}
}
// Set spectrum
if ( !filterFreq ) {
binDistance[k] = 2 * abs((12 * log(freq[k]/440.0) / log(2)) - (12 * log(closestFreq/440.0) / log(2)));
spectrum[k] = fft.getBand(k) * binWeight(WEIGHT_TYPE, binDistance[k]);
if ( LINEAR_EQ_TOGGLE ) {
spectrum[k] *= (linearEQIntercept + k * linearEQSlope);
}
// Sum PCP bins
pcp[frameNumber][freqToPitch(freq[k]) % 12] += pow(fft.getBand(k), 2) * binWeight(WEIGHT_TYPE, binDistance[k]);
}
}
normalizePCP();
if ( PCP_TOGGLE ) {
for ( int k = 0; k < fftSize; k++ ) {
if ( freq[k] < freqLowRange || freq[k] > freqHighRange ) { continue; }
spectrum[k] *= pcp[frameNumber][freqToPitch(freq[k]) % 12];
}
}
float sprev = 0;
float scurr = 0;
float snext = 0;
float[] foundPeak = new float[0];
float[] foundLevel = new float[0];
// find the peaks and valleys
for (int k = 1; k < fftSize -1; k++) {
if ( freq[k] < freqLowRange || freq[k] > freqHighRange ) { continue; }
sprev = spectrum[k-1];
scurr = spectrum[k];
snext = spectrum[k+1];
if ( scurr > sprev && scurr > snext && (scurr > PEAK_THRESHOLD) ) { // peak
// Parobolic Peak Interpolation to estimate the real peak frequency and magnitude
float ym1 = sprev;
float y0 = scurr;
float yp1 = snext;
float p = (yp1 - ym1) / (2 * ( 2 * y0 - yp1 - ym1));
float interpolatedAmplitude = y0 - 0.25 * (ym1 - yp1) * p;
float a = 0.5 * (ym1 - 2 * y0 + yp1);
float interpolatedFrequency = (k + p) * audio.sampleRate() / fftBufferSize;
if ( freqToPitch(interpolatedFrequency) != freqToPitch(freq[k]) ) {
freq[k] = interpolatedFrequency;
spectrum[k] = interpolatedAmplitude;
}
boolean isHarmonic = false;
// filter harmonics from peaks
if ( HARMONICS_TOGGLE ) {
for ( int f = 0; f < foundPeak.length; f++ ) {
//TODO: Cant remember why this is here
if (foundPeak.length > 2 ) {
isHarmonic = true;
break;
}
// If the current frequencies note has already peaked in a lower octave check to see if its level is lower probably a harmonic
if ( freqToPitch(freq[k]) % 12 == freqToPitch(foundPeak[f]) % 12 && spectrum[k] < foundLevel[f] ) {
isHarmonic = true;
break;
}
}
}
if ( isHarmonic ) {
peak[k] = HARMONIC;
} else {
peak[k] = PEAK;
notes[frameNumber] = (Note[])append(notes[frameNumber], new Note(freq[k], spectrum[k]));
// Track Peaks and Levels in this pass so we can detect harmonics
foundPeak = append(foundPeak, freq[k]);
foundLevel = append(foundLevel, spectrum[k]);
}
}
}
}
// draw routine needs to be synchronized otherwise it will run while buffers are being populated
synchronized void draw() {
render();
}
}