-
Notifications
You must be signed in to change notification settings - Fork 427
/
Copy pathdesc_op_mux.v
436 lines (379 loc) · 18.4 KB
/
desc_op_mux.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/*
Copyright 2019, The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE REGENTS OF THE UNIVERSITY OF CALIFORNIA ''AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF CALIFORNIA OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of The Regents of the University of California.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* Descriptor operation mux
*/
module desc_op_mux #
(
// Number of ports
parameter PORTS = 2,
// Select field width
parameter SELECT_WIDTH = 1,
// Queue index width
parameter QUEUE_INDEX_WIDTH = 4,
// Queue element pointer width
parameter QUEUE_PTR_WIDTH = 16,
// Completion queue index width
parameter CPL_QUEUE_INDEX_WIDTH = 4,
// Input request tag field width
parameter S_REQ_TAG_WIDTH = 8,
// Output request tag field width (towards descriptor module)
// Additional bits required for response routing
parameter M_REQ_TAG_WIDTH = S_REQ_TAG_WIDTH+$clog2(PORTS),
// Width of AXI stream interface in bits
parameter AXIS_DATA_WIDTH = 256,
// AXI stream tkeep signal width (words per cycle)
parameter AXIS_KEEP_WIDTH = AXIS_DATA_WIDTH/8,
// select round robin arbitration
parameter ARB_TYPE_ROUND_ROBIN = 0,
// LSB priority selection
parameter ARB_LSB_HIGH_PRIORITY = 1
)
(
input wire clk,
input wire rst,
/*
* Descriptor request output (to descriptor module)
*/
output wire [SELECT_WIDTH-1:0] m_axis_req_sel,
output wire [QUEUE_INDEX_WIDTH-1:0] m_axis_req_queue,
output wire [M_REQ_TAG_WIDTH-1:0] m_axis_req_tag,
output wire m_axis_req_valid,
input wire m_axis_req_ready,
/*
* Descriptor request status input (from descriptor module)
*/
input wire [QUEUE_INDEX_WIDTH-1:0] s_axis_req_status_queue,
input wire [QUEUE_PTR_WIDTH-1:0] s_axis_req_status_ptr,
input wire [CPL_QUEUE_INDEX_WIDTH-1:0] s_axis_req_status_cpl,
input wire [M_REQ_TAG_WIDTH-1:0] s_axis_req_status_tag,
input wire s_axis_req_status_empty,
input wire s_axis_req_status_error,
input wire s_axis_req_status_valid,
/*
* Descriptor data input (from descriptor module)
*/
input wire [AXIS_DATA_WIDTH-1:0] s_axis_desc_tdata,
input wire [AXIS_KEEP_WIDTH-1:0] s_axis_desc_tkeep,
input wire s_axis_desc_tvalid,
output wire s_axis_desc_tready,
input wire s_axis_desc_tlast,
input wire [M_REQ_TAG_WIDTH-1:0] s_axis_desc_tid,
input wire s_axis_desc_tuser,
/*
* Descriptor request input
*/
input wire [PORTS*SELECT_WIDTH-1:0] s_axis_req_sel,
input wire [PORTS*QUEUE_INDEX_WIDTH-1:0] s_axis_req_queue,
input wire [PORTS*S_REQ_TAG_WIDTH-1:0] s_axis_req_tag,
input wire [PORTS-1:0] s_axis_req_valid,
output wire [PORTS-1:0] s_axis_req_ready,
/*
* Descriptor request status output
*/
output wire [PORTS*QUEUE_INDEX_WIDTH-1:0] m_axis_req_status_queue,
output wire [PORTS*QUEUE_PTR_WIDTH-1:0] m_axis_req_status_ptr,
output wire [PORTS*CPL_QUEUE_INDEX_WIDTH-1:0] m_axis_req_status_cpl,
output wire [PORTS*S_REQ_TAG_WIDTH-1:0] m_axis_req_status_tag,
output wire [PORTS-1:0] m_axis_req_status_empty,
output wire [PORTS-1:0] m_axis_req_status_error,
output wire [PORTS-1:0] m_axis_req_status_valid,
/*
* Descriptor data output
*/
output wire [PORTS*AXIS_DATA_WIDTH-1:0] m_axis_desc_tdata,
output wire [PORTS*AXIS_KEEP_WIDTH-1:0] m_axis_desc_tkeep,
output wire [PORTS-1:0] m_axis_desc_tvalid,
input wire [PORTS-1:0] m_axis_desc_tready,
output wire [PORTS-1:0] m_axis_desc_tlast,
output wire [PORTS*S_REQ_TAG_WIDTH-1:0] m_axis_desc_tid,
output wire [PORTS-1:0] m_axis_desc_tuser
);
parameter CL_PORTS = $clog2(PORTS);
// check configuration
initial begin
if (M_REQ_TAG_WIDTH < S_REQ_TAG_WIDTH+$clog2(PORTS)) begin
$error("Error: M_REQ_TAG_WIDTH must be at least $clog2(PORTS) larger than S_REQ_TAG_WIDTH (instance %m)");
$finish;
end
end
// request mux
wire [PORTS-1:0] request;
wire [PORTS-1:0] acknowledge;
wire [PORTS-1:0] grant;
wire grant_valid;
wire [CL_PORTS-1:0] grant_encoded;
// internal datapath
reg [SELECT_WIDTH-1:0] m_axis_req_sel_int;
reg [QUEUE_INDEX_WIDTH-1:0] m_axis_req_queue_int;
reg [M_REQ_TAG_WIDTH-1:0] m_axis_req_tag_int;
reg m_axis_req_valid_int;
reg m_axis_req_ready_int_reg = 1'b0;
wire m_axis_req_ready_int_early;
assign s_axis_req_ready = (m_axis_req_ready_int_reg && grant_valid) << grant_encoded;
// mux for incoming packet
wire [SELECT_WIDTH-1:0] current_s_desc_sel = s_axis_req_sel[grant_encoded*SELECT_WIDTH +: SELECT_WIDTH];
wire [QUEUE_INDEX_WIDTH-1:0] current_s_desc_queue = s_axis_req_queue[grant_encoded*QUEUE_INDEX_WIDTH +: QUEUE_INDEX_WIDTH];
wire [S_REQ_TAG_WIDTH-1:0] current_s_desc_tag = s_axis_req_tag[grant_encoded*S_REQ_TAG_WIDTH +: S_REQ_TAG_WIDTH];
wire current_s_desc_valid = s_axis_req_valid[grant_encoded];
wire current_s_desc_ready = s_axis_req_ready[grant_encoded];
// arbiter instance
arbiter #(
.PORTS(PORTS),
.ARB_TYPE_ROUND_ROBIN(ARB_TYPE_ROUND_ROBIN),
.ARB_BLOCK(1),
.ARB_BLOCK_ACK(1),
.ARB_LSB_HIGH_PRIORITY(ARB_LSB_HIGH_PRIORITY)
)
arb_inst (
.clk(clk),
.rst(rst),
.request(request),
.acknowledge(acknowledge),
.grant(grant),
.grant_valid(grant_valid),
.grant_encoded(grant_encoded)
);
assign request = s_axis_req_valid & ~grant;
assign acknowledge = grant & s_axis_req_valid & s_axis_req_ready;
always @* begin
// pass through selected packet data
m_axis_req_sel_int = current_s_desc_sel;
m_axis_req_queue_int = current_s_desc_queue;
m_axis_req_tag_int = {grant_encoded, current_s_desc_tag};
m_axis_req_valid_int = current_s_desc_valid && m_axis_req_ready_int_reg && grant_valid;
end
// output datapath logic
reg [SELECT_WIDTH-1:0] m_axis_req_sel_reg = {SELECT_WIDTH{1'b0}};
reg [QUEUE_INDEX_WIDTH-1:0] m_axis_req_queue_reg = {QUEUE_INDEX_WIDTH{1'b0}};
reg [M_REQ_TAG_WIDTH-1:0] m_axis_req_tag_reg = {M_REQ_TAG_WIDTH{1'b0}};
reg m_axis_req_valid_reg = 1'b0, m_axis_req_valid_next;
reg [SELECT_WIDTH-1:0] temp_m_axis_req_sel_reg = {SELECT_WIDTH{1'b0}};
reg [QUEUE_INDEX_WIDTH-1:0] temp_m_axis_req_queue_reg = {QUEUE_INDEX_WIDTH{1'b0}};
reg [M_REQ_TAG_WIDTH-1:0] temp_m_axis_req_tag_reg = {M_REQ_TAG_WIDTH{1'b0}};
reg temp_m_axis_req_valid_reg = 1'b0, temp_m_axis_req_valid_next;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_req_sel = m_axis_req_sel_reg;
assign m_axis_req_queue = m_axis_req_queue_reg;
assign m_axis_req_tag = m_axis_req_tag_reg;
assign m_axis_req_valid = m_axis_req_valid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_req_ready_int_early = m_axis_req_ready || (!temp_m_axis_req_valid_reg && (!m_axis_req_valid_reg || !m_axis_req_valid_int));
always @* begin
// transfer sink ready state to source
m_axis_req_valid_next = m_axis_req_valid_reg;
temp_m_axis_req_valid_next = temp_m_axis_req_valid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_req_ready_int_reg) begin
// input is ready
if (m_axis_req_ready || !m_axis_req_valid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_req_valid_next = m_axis_req_valid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_req_valid_next = m_axis_req_valid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_req_ready) begin
// input is not ready, but output is ready
m_axis_req_valid_next = temp_m_axis_req_valid_reg;
temp_m_axis_req_valid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axis_req_valid_reg <= 1'b0;
m_axis_req_ready_int_reg <= 1'b0;
temp_m_axis_req_valid_reg <= 1'b0;
end else begin
m_axis_req_valid_reg <= m_axis_req_valid_next;
m_axis_req_ready_int_reg <= m_axis_req_ready_int_early;
temp_m_axis_req_valid_reg <= temp_m_axis_req_valid_next;
end
// datapath
if (store_axis_int_to_output) begin
m_axis_req_sel_reg <= m_axis_req_sel_int;
m_axis_req_queue_reg <= m_axis_req_queue_int;
m_axis_req_tag_reg <= m_axis_req_tag_int;
end else if (store_axis_temp_to_output) begin
m_axis_req_sel_reg <= temp_m_axis_req_sel_reg;
m_axis_req_queue_reg <= temp_m_axis_req_queue_reg;
m_axis_req_tag_reg <= temp_m_axis_req_tag_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_req_sel_reg <= m_axis_req_sel_int;
temp_m_axis_req_queue_reg <= m_axis_req_queue_int;
temp_m_axis_req_tag_reg <= m_axis_req_tag_int;
end
end
// request status demux
reg [QUEUE_INDEX_WIDTH-1:0] m_axis_req_status_queue_reg = {QUEUE_INDEX_WIDTH{1'b0}}, m_axis_req_status_queue_next;
reg [QUEUE_PTR_WIDTH-1:0] m_axis_req_status_ptr_reg = {QUEUE_PTR_WIDTH{1'b0}}, m_axis_req_status_ptr_next;
reg [CPL_QUEUE_INDEX_WIDTH-1:0] m_axis_req_status_cpl_reg = {CPL_QUEUE_INDEX_WIDTH{1'b0}}, m_axis_req_status_cpl_next;
reg [S_REQ_TAG_WIDTH-1:0] m_axis_req_status_tag_reg = {S_REQ_TAG_WIDTH{1'b0}}, m_axis_req_status_tag_next;
reg m_axis_req_status_empty_reg = 1'b0, m_axis_req_status_empty_next;
reg m_axis_req_status_error_reg = 1'b0, m_axis_req_status_error_next;
reg [PORTS-1:0] m_axis_req_status_valid_reg = {PORTS{1'b0}}, m_axis_req_status_valid_next;
assign m_axis_req_status_queue = {PORTS{m_axis_req_status_queue_reg}};
assign m_axis_req_status_ptr = {PORTS{m_axis_req_status_ptr_reg}};
assign m_axis_req_status_cpl = {PORTS{m_axis_req_status_cpl_reg}};
assign m_axis_req_status_tag = {PORTS{m_axis_req_status_tag_reg}};
assign m_axis_req_status_empty = {PORTS{m_axis_req_status_empty_reg}};
assign m_axis_req_status_error = {PORTS{m_axis_req_status_error_reg}};
assign m_axis_req_status_valid = m_axis_req_status_valid_reg;
always @* begin
m_axis_req_status_queue_next = s_axis_req_status_queue;
m_axis_req_status_ptr_next = s_axis_req_status_ptr;
m_axis_req_status_cpl_next = s_axis_req_status_cpl;
m_axis_req_status_tag_next = s_axis_req_status_tag;
m_axis_req_status_empty_next = s_axis_req_status_empty;
m_axis_req_status_error_next = s_axis_req_status_error;
m_axis_req_status_valid_next = s_axis_req_status_valid << (PORTS > 1 ? (s_axis_req_status_tag >> S_REQ_TAG_WIDTH) : 0);
end
always @(posedge clk) begin
if (rst) begin
m_axis_req_status_valid_reg <= {PORTS{1'b0}};
end else begin
m_axis_req_status_valid_reg <= m_axis_req_status_valid_next;
end
m_axis_req_status_queue_reg <= m_axis_req_status_queue_next;
m_axis_req_status_ptr_reg <= m_axis_req_status_ptr_next;
m_axis_req_status_cpl_reg <= m_axis_req_status_cpl_next;
m_axis_req_status_tag_reg <= m_axis_req_status_tag_next;
m_axis_req_status_empty_reg <= m_axis_req_status_empty_next;
m_axis_req_status_error_reg <= m_axis_req_status_error_next;
end
// descriptor data demux
// internal datapath
reg [AXIS_DATA_WIDTH-1:0] m_axis_desc_tdata_int;
reg [AXIS_KEEP_WIDTH-1:0] m_axis_desc_tkeep_int;
reg [PORTS-1:0] m_axis_desc_tvalid_int;
reg m_axis_desc_tready_int_reg = 1'b0;
wire m_axis_desc_tready_int_early;
reg m_axis_desc_tlast_int;
reg [S_REQ_TAG_WIDTH-1:0] m_axis_desc_tid_int;
reg m_axis_desc_tuser_int;
assign s_axis_desc_tready = m_axis_desc_tready_int_reg;
always @* begin
m_axis_desc_tdata_int = s_axis_desc_tdata;
m_axis_desc_tkeep_int = s_axis_desc_tkeep;
m_axis_desc_tvalid_int = (s_axis_desc_tvalid && s_axis_desc_tready) << (PORTS > 1 ? (s_axis_desc_tid >> S_REQ_TAG_WIDTH) : 0);
m_axis_desc_tlast_int = s_axis_desc_tlast;
m_axis_desc_tid_int = s_axis_desc_tid;
m_axis_desc_tuser_int = s_axis_desc_tuser;
end
// output datapath logic
reg [AXIS_DATA_WIDTH-1:0] m_axis_desc_tdata_reg = {AXIS_DATA_WIDTH{1'b0}};
reg [AXIS_KEEP_WIDTH-1:0] m_axis_desc_tkeep_reg = {AXIS_KEEP_WIDTH{1'b0}};
reg [PORTS-1:0] m_axis_desc_tvalid_reg = {PORTS{1'b0}}, m_axis_desc_tvalid_next;
reg m_axis_desc_tlast_reg = 1'b0;
reg [S_REQ_TAG_WIDTH-1:0] m_axis_desc_tid_reg = {S_REQ_TAG_WIDTH{1'b0}};
reg m_axis_desc_tuser_reg = 1'b0;
reg [AXIS_DATA_WIDTH-1:0] temp_m_axis_desc_tdata_reg = {AXIS_DATA_WIDTH{1'b0}};
reg [AXIS_KEEP_WIDTH-1:0] temp_m_axis_desc_tkeep_reg = {AXIS_KEEP_WIDTH{1'b0}};
reg [PORTS-1:0] temp_m_axis_desc_tvalid_reg = {PORTS{1'b0}}, temp_m_axis_desc_tvalid_next;
reg temp_m_axis_desc_tlast_reg = 1'b0;
reg [S_REQ_TAG_WIDTH-1:0] temp_m_axis_desc_tid_reg = {S_REQ_TAG_WIDTH{1'b0}};
reg temp_m_axis_desc_tuser_reg = 1'b0;
// datapath control
reg store_axis_req_int_to_output;
reg store_axis_req_int_to_temp;
reg store_axis_req_temp_to_output;
assign m_axis_desc_tdata = {PORTS{m_axis_desc_tdata_reg}};
assign m_axis_desc_tkeep = {PORTS{m_axis_desc_tkeep_reg}};
assign m_axis_desc_tlast = {PORTS{m_axis_desc_tlast_reg}};
assign m_axis_desc_tid = {PORTS{m_axis_desc_tid_reg}};
assign m_axis_desc_tuser = {PORTS{m_axis_desc_tuser_reg}};
assign m_axis_desc_tvalid = m_axis_desc_tvalid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_desc_tready_int_early = (m_axis_desc_tready & m_axis_desc_tvalid) || (!temp_m_axis_desc_tvalid_reg && (!m_axis_desc_tvalid || !m_axis_desc_tvalid_int));
always @* begin
// transfer sink ready state to source
m_axis_desc_tvalid_next = m_axis_desc_tvalid_reg;
temp_m_axis_desc_tvalid_next = temp_m_axis_desc_tvalid_reg;
store_axis_req_int_to_output = 1'b0;
store_axis_req_int_to_temp = 1'b0;
store_axis_req_temp_to_output = 1'b0;
if (m_axis_desc_tready_int_reg) begin
// input is ready
if ((m_axis_desc_tready & m_axis_desc_tvalid) || !m_axis_desc_tvalid) begin
// output is ready or currently not valid, transfer data to output
m_axis_desc_tvalid_next = m_axis_desc_tvalid_int;
store_axis_req_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_desc_tvalid_next = m_axis_desc_tvalid_int;
store_axis_req_int_to_temp = 1'b1;
end
end else if (m_axis_desc_tready & m_axis_desc_tvalid) begin
// input is not ready, but output is ready
m_axis_desc_tvalid_next = temp_m_axis_desc_tvalid_reg;
temp_m_axis_desc_tvalid_next = {PORTS{1'b0}};
store_axis_req_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axis_desc_tvalid_reg <= {PORTS{1'b0}};
m_axis_desc_tready_int_reg <= 1'b0;
temp_m_axis_desc_tvalid_reg <= {PORTS{1'b0}};
end else begin
m_axis_desc_tvalid_reg <= m_axis_desc_tvalid_next;
m_axis_desc_tready_int_reg <= m_axis_desc_tready_int_early;
temp_m_axis_desc_tvalid_reg <= temp_m_axis_desc_tvalid_next;
end
// datapath
if (store_axis_req_int_to_output) begin
m_axis_desc_tdata_reg <= m_axis_desc_tdata_int;
m_axis_desc_tkeep_reg <= m_axis_desc_tkeep_int;
m_axis_desc_tlast_reg <= m_axis_desc_tlast_int;
m_axis_desc_tid_reg <= m_axis_desc_tid_int;
m_axis_desc_tuser_reg <= m_axis_desc_tuser_int;
end else if (store_axis_req_temp_to_output) begin
m_axis_desc_tdata_reg <= temp_m_axis_desc_tdata_reg;
m_axis_desc_tkeep_reg <= temp_m_axis_desc_tkeep_reg;
m_axis_desc_tlast_reg <= temp_m_axis_desc_tlast_reg;
m_axis_desc_tid_reg <= temp_m_axis_desc_tid_reg;
m_axis_desc_tuser_reg <= temp_m_axis_desc_tuser_reg;
end
if (store_axis_req_int_to_temp) begin
temp_m_axis_desc_tdata_reg <= m_axis_desc_tdata_int;
temp_m_axis_desc_tkeep_reg <= m_axis_desc_tkeep_int;
temp_m_axis_desc_tlast_reg <= m_axis_desc_tlast_int;
temp_m_axis_desc_tid_reg <= m_axis_desc_tid_int;
temp_m_axis_desc_tuser_reg <= m_axis_desc_tuser_int;
end
end
endmodule