-
Notifications
You must be signed in to change notification settings - Fork 0
/
viz_diff_process.py
73 lines (60 loc) · 2.58 KB
/
viz_diff_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import sys
import pickle
import argparse
import os.path as osp
import torch
import numpy as np
sys.path.append(os.getcwd())
from src.utils.general import set_random_seed
from src.utils.euler import define_actions
from src.config import Config
from src.net import Parallel_Denoiser, Series_Denoiser
from src.diff import DDPM
from src.eval.euler import sample_euler_process
from src.viz.euler import video_euler
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', default='h36m_euler_parallel_20step')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--gpu-id', type=int, default=0)
parser.add_argument('--sample-num', type=int, default=50)
args = parser.parse_args()
cfg = Config(args.cfg)
set_random_seed(args.seed)
device = 'cuda:{}'.format(args.gpu_id) if args.gpu_id >= 0 else 'cpu'
if 'euler' in args.cfg:
# fixed prefix and pred length
prefix_len = 50
pred_len = 25
pose_dim = 54
# params for plot
n_prefix = 8 # fixed
row = 1
col = 5
actions = define_actions("all")
data = pickle.load(open('./data/h36m_euler.pkl', 'rb'))
train_set = data['train']
test_set = data['test']
data_mean = data['mean']
data_std = data['std']
dim_to_ignore = data['dim_to_ignore']
dim_to_use = data['dim_to_use']
## define network
if '_parallel_' in args.cfg:
denoiser = Parallel_Denoiser(pose_dim, cfg.qkv_dim, cfg.num_layers, cfg.num_heads,
prefix_len, pred_len, cfg.diff_steps)
elif '_series_' in args.cfg:
denoiser = Series_Denoiser(pose_dim, cfg.qkv_dim, cfg.num_layers, cfg.num_heads,
prefix_len, pred_len, cfg.diff_steps)
ddpm = DDPM(denoiser, cfg, device).to(device)
ddpm.load_state_dict(torch.load(osp.join(cfg.model_dir, '0500.pth'.format(cfg.max_epoch))))
ddpm.eval()
out_path = osp.join('./pred_results/{}.pkl'.format(args.cfg))
vid_path = osp.join('./viz_diff/{}'.format(args.cfg))
os.makedirs('./pred_results', exist_ok=True)
os.makedirs(vid_path, exist_ok=True)
print('==========Start Visualization==========')
sample_euler_process(out_path, ddpm, args.sample_num, actions, test_set, data_mean, data_std, dim_to_ignore, pose_dim, prefix_len, pred_len, device)
video_euler(vid_path, out_path, n_prefix, prefix_len, pred_len)
print('==========Finish Visualization==========')