-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGApopulation.h
455 lines (390 loc) · 13 KB
/
GApopulation.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
/***************************************************************************
GApopulation.h - description
-------------------
begin : Fri Sep 27 2002
copyright : (C) 2002 by Craig Nicol
email : craig.nicol@gmail.com
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
#ifndef __GAPOPULATION_H__
#define __GAPOPULATION_H__
#include "GAchromosome.h"
#include <numeric> // For accumulate
#include "MGalgo.h"
#include "GAsus.h" // New O(1) SUS algorithm
#include <iostream>
namespace mg_GA {
/***********************************************************************
* NAMESPACE VARIABLE DEFINITIONS *
***********************************************************************/
enum selection_method_list {
SM_ROULETTE,
SM_SUS,
SM_RANK,
SM_WANDER,
SM_TOURNAMENT,
SM_RANDOM,
SM_USER0 = 1000,
SM_USER1,
SM_USER2,
SM_USER3,
SM_USER4,
SM_USER5,
SM_USER6,
SM_USER7,
SM_USER8,
SM_USER9
};
typedef enum selection_method_list selection_method_t;
enum population_control_list {
PC_REPLACE,
PC_RANK,
PC_USER0 = 1000,
PC_USER1,
PC_USER2,
PC_USER3,
PC_USER4,
PC_USER5,
PC_USER6,
PC_USER7,
PC_USER8,
PC_USER9
};
typedef enum population_control_list population_control_t;
const bool SORT_ASCENDING = false;
const bool SORT_DESCENDING = true;
/***********************************************************************
* *
* POPULATION CONTROL *
* *
***********************************************************************/
template<class chrom_t = chromosome<bool, 32> >
class population {
/***********************************************************************
* VARIABLE DEFINITIONS *
***********************************************************************/
protected:
// Using vector here as we require a lot of random access
// and not much resizing
// typedef chromosome<bool, 32> chrom_t;
typedef std::vector<chrom_t> pop_t;
pop_t _population;
double _chrom_mutation_rate;
double _mutation_rate, _crossover_rate, _population_crossover_rate;
long _population_size;
int _npopulations; // Number of populations, = 1 for now
selection_method_t _selection_method;
population_control_t _population_control;
bool _autosort;
int _verb;
int _verb_step;
double _max_fitness;
// select_chromosome cached data
double _sc_sum_fitness;
std::vector<double> _sc_cumul_fitns;
sus_search _sc_suss;
private:
int _generation;
/***********************************************************************
* FUNCTION DEFINITIONS *
***********************************************************************/
public:
template<class _Ctype, int _Csize>
void initialise(fitness_base<_Ctype,_Csize> * fitfunc, crossover_base<_Ctype,_Csize> * crossfunc, mutate_base<_Ctype,_Csize> * mutfunc)
{
//initialise population here
for (int i = 0; i < _population_size; i++) {
_population.push_back(chrom_t(fitfunc, crossfunc, mutfunc, _chrom_mutation_rate));
}
};
~population() { };
void run_once() {
prepare();
switch (_population_control) {
case PC_REPLACE: run_once_replace(); break; //this will be able to step through the populations
case PC_RANK: run_once_rank(_population_size / 2); break;
default: // raise an error here
;
}
mutate();
};
void run(int ngenerations) { // as above but with loops
if(_verb > 0) {
std::cerr << "Running " << ngenerations << " generations." << std::endl;
_max_fitness = this->max();
}
for (int i = 0; i < ngenerations; i++) {
_generation = i;
run_once();
if (_verb > 0) {
if (this->max() > _max_fitness) {
_max_fitness = this->max();
std::cerr << "New fittest: " << max_chrom().showchrom() << " = " << _max_fitness << std::endl;
}
if (i%_verb_step == 0) {
std::cerr << "Completed " << i << " of " << ngenerations << " generations." << std::endl;
}
}
}
_generation = -1;
};
void setverbose(int verbose, int step_size = 10) {
_verb = verbose;
_verb_step = step_size;
}
std::string showfitness() {
std::strstream out;
for (typename pop_t::iterator it = _population.begin(); it != _population.end(); ++it) {
out << it->f() << ' ';
}
out << '\0';
return out.str();
}
void sort(bool dir=SORT_ASCENDING) {
std::sort(_population.begin(), _population.end());
if(dir == SORT_DESCENDING)
std::reverse(_population.begin(), _population.end());
}
chrom_t first() {
return _population[0];
}
chrom_t last() {
return _population[_population_size - 1];
}
chrom_t min_chrom() {
return *std::min_element(_population.begin(), _population.end());
}
chrom_t max_chrom() {
return *std::max_element(_population.begin(), _population.end());
}
double min() { return min_chrom().f(); };
double max() { return max_chrom().f(); };
private:
bool rand_less(float select_rate) {
return ((rand() % INT_MAX) < (select_rate * INT_MAX));
}
void mutate() {
for(int i = 0; i < _population_size; i++) {
if (rand_less(_mutation_rate)) {
~_population[i];
}
}
}
void run_once_rank(int N) { // one generation = (0 < N <= psize) crossovers
static pop_t add_pop;
add_pop.clear();
add_pop.reserve(N);
double minf = this->min();
for(int i = 0; i < N; i++) {
chrom_t child = select_chromosome() + select_chromosome();
~child;
if (child.f() > minf ) {
add_pop.push_back(child);
}
}
if (_verb > 1) {
std::cerr << "Adding " << add_pop.size() << " children..." << std::endl;
std::cerr << "Original Range: " << this->min() << " < " << this->max() << std::endl;
std::cerr << "Adding Range: " << std::min_element(add_pop.begin(), add_pop.end())->f() << " < " << std::max_element(add_pop.begin(), add_pop.end())->f() << std::endl;
}
if (!_autosort)
sort(SORT_ASCENDING);
copy(add_pop.begin(), add_pop.end(), _population.begin());
};
void run_once_replace() { // one generation = psize crossovers
pop_t newpop;
newpop.reserve(_population_size);
for(int i = 0; i < _population_size; ++i) {
chrom_t child = select_chromosome() + select_chromosome();
if (_verb > 1) {
std::cerr << child.f() << ',';
}
newpop.push_back(child);
}
if (_verb > 1) {
std::cerr << std::endl;
}
copy(newpop.begin(),newpop.end(),_population.begin());
};
struct add_fitness : public std::binary_function<double, chrom_t, double> {
double operator()(double total, chrom_t C) {
return total + C.f();
};
} _fitness_sum;
double total_fitness() {
return std::accumulate(_population.begin(), _population.end(), 0.0, _fitness_sum);
};
std::vector<double> fitness_redistribution(std::vector<double> fitnesses) {
double cum_f = 0;
int i = 0;
for (typename pop_t::iterator pit = _population.begin();
pit != _population.end(); ++pit, ++i) {
cum_f += pit->f();
fitnesses[i] = cum_f;
}
return fitnesses;
};
std::vector<double> fitness_distribution() {
std::vector<double> fitnesses(_population_size);
return fitness_redistribution(fitnesses);
};
void prepare() {
if (_autosort) {
sort(SORT_ASCENDING);
};
switch(_selection_method) {
case SM_ROULETTE:
case SM_SUS:
case SM_USER0:
{
_sc_sum_fitness = total_fitness();
_sc_cumul_fitns = fitness_redistribution(_sc_cumul_fitns);
} break;
case SM_USER1:
{
_sc_sum_fitness = total_fitness();
_sc_cumul_fitns = fitness_redistribution(_sc_cumul_fitns);
_sc_suss.construct_data(_sc_cumul_fitns);
} break;
default:
// Do nothing
break;
};
};
chrom_t select_chromosome() {
// Assume _population is sorted s.t. largest value is at end
switch (_selection_method) {
case SM_RANK:
// Prefer larger indices...
return _population[floor(pow(rand() % int(pow(_population_size, 1.0/_crossover_rate)), _crossover_rate))]; break;
case SM_TOURNAMENT: {
chrom_t first = _population[rand() % _population_size];
chrom_t second = _population[rand() % _population_size];
return ((first.f() >= second.f()) && !rand_less(_crossover_rate))?first:second;
}
break;
case SM_ROULETTE:
case SM_SUS: {
// Pick stuff - this is the slow way to do it
double target_f = (double(rand()) * _sc_sum_fitness)/RAND_MAX;
unsigned int i = 0;
for(typename std::vector<double>::iterator cum_it = _sc_cumul_fitns.begin();
(cum_it != _sc_cumul_fitns.end()) && (*cum_it < target_f);
++cum_it, ++i) {
}
if (i < _population.size())
return _population[i];
else
return _population[_population.size()-1];
}
break;
case SM_USER0: // Test faster SM_SUS O(log n)
{
unsigned int index;
double target_f = (double(rand()) * _sc_sum_fitness)/RAND_MAX;
//index = mgtl::binary_search(target_f, _sc_cumul_fitns);
index = mgtl::binary_search(target_f, _sc_cumul_fitns.begin(), _sc_cumul_fitns.end()-1);
if (index >= _population.size())
return _population[_population.size() - 1];
else
return _population[index];
}
break;
case SM_USER1: // Test O(1) SUS algorithm
{
unsigned int index;
double target_f = (double(rand()) * _sc_sum_fitness)/RAND_MAX;
index = _sc_suss.search_data(target_f);
if (index < _population.size())
return _population[index];
else
return _population[_population.size()-1];
}
break;
case SM_WANDER:
case SM_RANDOM:
default:
return _population[rand() % _population_size];
}
};
public:
population(double popmrate = 0.01, double chrommrate = 0.1,
double crate = 0.2, long psize = 100,
population_control_t pc = PC_REPLACE,
selection_method_t sm = SM_SUS,
int npops = 1, double popcrate = 0,
int verbose = 0, int step_size = 10,
float sus_factor = 10.0) :
_sc_suss(sus_factor)
{
// check data is valid here
_mutation_rate = popmrate;
_chrom_mutation_rate = chrommrate;
_crossover_rate = crate;
_population_crossover_rate = popcrate;
_population_size = psize;
_npopulations = npops;
_population_control = pc;
_selection_method = sm;
_verb = verbose;
_verb_step = step_size;
_population.reserve(_population_size);
_generation = -1;
switch (_selection_method) {
case SM_RANK:
_autosort = true;
break;
case SM_SUS:
case SM_ROULETTE:
case SM_USER0:
case SM_USER1:
_sc_cumul_fitns = fitness_distribution();
default:
_autosort = false;
}
}
};
template<class chrom_t = chromosome<bool, 32>, int PSIZE = 1000 >
class population_array : public population<chrom_t> {
typedef chrom_t pop_t[PSIZE];
chrom_t * _population_array;
public:
population_array(double popmrate = 0.01, double chrommrate = 0.1,
double crate = 0.2, int ignored_psize = PSIZE,
population_control_t pc = PC_REPLACE,
selection_method_t sm = SM_SUS,
int npops = 1, double popcrate = 0,
int verbose = 0, int step_size = 10)
{
// check data is valid here
// check data is valid here
this->_mutation_rate = popmrate;
this->_chrom_mutation_rate = chrommrate;
this->_crossover_rate = crate;
this->_population_crossover_rate = popcrate;
this->_population_size = PSIZE;
this->_npopulations = npops;
this->_population_control = pc;
this->_selection_method = sm;
this->_verb = verbose;
this->_verb_step = step_size;
if (this->_selection_method == SM_RANK)
this->_autosort = true;
else
this->_autosort = false;
};
template<class _Ctype, int _Csize>
void initialise(fitness_base<_Ctype,_Csize> * fitfunc, crossover_base<_Ctype,_Csize> * crossfunc)
{
this->_population_array = new chrom_t(fitfunc, crossfunc, this->_chrom_mutation_rate);
};
};
};
#endif // __GAPOPULATION_H__