forked from tlc-pack/TLCBench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
benchmark_autoscheduler.py
122 lines (104 loc) · 4.18 KB
/
benchmark_autoscheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import argparse
import numpy as np
import tvm
from tvm import relay, auto_scheduler
import tvm.contrib.graph_runtime as runtime
from utils import get_network, make_network_key
def benchmark(network, batch_size, dtype, target, log_file, repeat):
layout = "NHWC"
mod, params, input_name, input_shape, output_shape = get_network(
network, batch_size, dtype, layout
)
assert os.path.exists(log_file), "The log file '%s' does not exist." % log_file
print("Use log file %s" % log_file)
if network in ["bert"]:
# Build module
with auto_scheduler.ApplyHistoryBest(log_file):
with tvm.transform.PassContext(
opt_level=3, config={"relay.backend.use_auto_scheduler": True}
):
lib = relay.build(mod, target=target, params=params)
ctx = tvm.context(str(target), 0)
module = runtime.GraphModule(lib["default"](ctx))
# Feed input data
seq_length = input_shape[0][1]
data = np.random.uniform(size=input_shape[0])
token_types = np.random.uniform(size=input_shape[1])
valid_length = np.array([seq_length] * batch_size)
module.set_input(data0=data, data1=token_types, data2=valid_length)
else:
# Build module
with auto_scheduler.ApplyHistoryBest(log_file):
with tvm.transform.PassContext(
opt_level=3, config={"relay.backend.use_auto_scheduler": True}
):
lib = relay.build(mod, target=target, params=params)
ctx = tvm.context(str(target), 0)
module = runtime.GraphModule(lib["default"](ctx))
# Feed input data
data = np.random.uniform(size=input_shape)
module.set_input(input_name, data)
# Evaluate
ftimer = module.module.time_evaluator("run", ctx, min_repeat_ms=500, repeat=repeat)
return np.array(ftimer().results)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--network",
type=str,
choices=["resnet_50", "mobilenet_v2", "bert", "all"],
default="all",
help="The name of the neural network.",
)
parser.add_argument("--batch-size", type=int, default=1, help="The batch size")
parser.add_argument(
"--target",
type=str,
default="llvm -model=platinum-8124m -mcpu=skylake-avx512",
help="The compilation target.",
)
parser.add_argument("--dtype", type=str, default="float32", help="The data type.")
parser.add_argument(
"--logdir", type=str, default="tmp_logs/", help="Log file directory."
)
parser.add_argument("--repeat", type=int, default=3)
args = parser.parse_args()
if args.network == "all":
networks = ["resnet_50", "mobilenet_v2", "bert"]
else:
networks = [args.network]
batch_sizes = [args.batch_size]
dtypes = [args.dtype]
target = tvm.target.Target(args.target)
# Benchmark
result_messages = []
for network in networks:
for batch_size in batch_sizes:
for dtype in dtypes:
network_key = make_network_key(network, batch_size, dtype)
print("Benchmark %s ..." % network_key)
log_file = os.path.join(
args.logdir, "autoscheduler", target.model, network_key + ".json"
)
prof_res = benchmark(
network, batch_size, dtype, target, log_file, args.repeat
)
prof_res *= 1000 # convert to millisecond
message = "%-18s %-12s %-19s (%s)" % (
network,
batch_size,
"%.2f ms" % np.mean(prof_res),
"%.2f ms" % np.std(prof_res),
)
result_messages.append(message)
# Print result
print("-------------------------------------------------------------")
print(
"%-18s %-12s %-20s"
% ("Network Name", "Batch size", "Mean Inference Time (std dev)")
)
print("-------------------------------------------------------------")
for line in result_messages:
print(line)
print("-------------------------------------------------------------")