Skip to content

Latest commit

 

History

History
140 lines (114 loc) · 3.29 KB

README.md

File metadata and controls

140 lines (114 loc) · 3.29 KB

zigTensor

zigTensor is a fast, flexible machine learning library written entirely in Zig; the design is heavily inspired by the Flashlight library.

Minimum Requirements

Requirement Notes
Zig version main
ArrayFire latest via homebrew
OS OSx & Linux (verified on Ubuntu)

Install with zigup:

zigup master

OSx Setup

Install ArrayFire with homebrew:

brew install arrayfire

Linux Setup

See Github Action Workflow for example setup on Ubuntu.

Status

The project is in the incredibly early stages of development and only the core Tensor/Tensor Ops functionality is currently functional. Autograd is a WIP.

Currently, development is solely focused on OSx/Linux and leveraging ArrayFire for the backend.

Basic Tensor Usage

const zt = @import("zigTensor");
const allocator = std.heap.c_allocator; // or your preferred allocator

const DType = zt.tensor.DType;
const deinit = zt.tensor.deinit;
const Tensor = zt.tensor.Tensor;

defer deinit(); // deinit global singletons (e.g. ArrayFire Backend/DeviceManager)

var a = try zt.tensor.rand(allocator, &.{5, 5}, DType.f32);
defer a.deinit();

var b = try zt.tensor.rand(allocator, &.{5, 5}, DType.f32);
defer b.deinit();

var c = try zt.tensor.add(allocator, Tensor, a, Tensor, b); // operator overloading pending (likely utilize comath library)
defer c.deinit();

Roadmap

  • bindings
    • ArrayFire // TODO: optimize
    • oneDNN (WIP)
  • autograd (WIP)
    • Functions // TODO: debug oneDNN (TensorExtension) fns
    • Utils
    • Variable // TODO: optimize
  • common (WIP)
  • contrib
  • dataset
  • distributed
  • meter
  • nn
  • optim
  • runtime (WIP)
    • CUDADevice
    • CUDAStream
    • CUDAUtils
    • Device
    • DeviceManager
    • DeviceType
    • Stream
    • SynchronousStream
  • tensor
    • backend
      • ArrayFire (current focus - WIP)
        • mem
          • CachingMemoryManager
          • DefaultMemoryManager
          • MemoryManagerAdapter
          • MemoryManagerAdapterDeviceInterface
          • MemoryManagerInstaller
        • AdvancedIndex (CUDA specific API)
        • ArrayFireBLAS
        • ArrayFireBackend
        • ArrayFireBinaryOps
        • ArrayFireCPUStream
        • ArrayFireReductions
        • ArrayFireShapeAndIndex
        • ArrayFireTensor
        • ArrayFireUnaryOps
        • Utils
      • JIT
      • oneDNN
      • Stub
    • CUDAProfile
    • Compute
    • DefaultTensorType
    • Index
    • Init
    • Profile
    • Random
    • Shape
    • TensorAdapter
    • TensorBackend
    • TensorBase
    • TensorExtension
    • Types

Backend Roadmap

  • ArrayFire (current focus - WIP)
    • CPU
    • OpenCL
    • CUDA
  • JIT
  • oneDNN (WIP - first implementing for use with Autograd ops)
  • Stub

Other TODOs:

  • Language APIs
    • C compatible API
    • JS Bindings
      • FFI
      • NAPI
      • WASM