-
Notifications
You must be signed in to change notification settings - Fork 0
/
agent.py
80 lines (56 loc) · 2.26 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from collections import deque
import random
import numpy as np
from model import mlp
class DQNAgent(object):
""" A simple Deep Q agent """
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=1000)
self.gamma = 0.95 # discount rate
self.epsilon = 1.0 # exploration rate
self.epsilon_min = 0.01
self.epsilon_decay = 0.99
self.model = mlp(state_size, action_size)
self.total_actions = 0
self.qs = [[],[],[],[]]
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def log_q_values(self,state):
# if total_actions % 10 == 0:
step_qs = self.model.predict(state)
self.qs[0].append(step_qs[0][0])
self.qs[1].append(step_qs[0][1])
self.qs[2].append(step_qs[0][2])
self.qs[3].append(np.max(step_qs[0]))
def act(self, state):
self.log_q_values(state)
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values[0]) # returns action
def replay(self, batch_size=32):
""" vectorized implementation; 30x speed up compared with for loop """
minibatch = random.sample(self.memory, batch_size)
states = np.array([tup[0][0] for tup in minibatch])
actions = np.array([tup[1] for tup in minibatch])
rewards = np.array([tup[2] for tup in minibatch])
next_states = np.array([tup[3][0] for tup in minibatch])
done = np.array([tup[4] for tup in minibatch])
# Q(s', a)
target = rewards + self.gamma * np.amax(self.model.predict(next_states), axis=1)
# end state target is reward itself (no lookahead)
target[done] = rewards[done]
# Q(s, a)
target_f = self.model.predict(states)
# make the agent to approximately map the current state to future discounted reward
target_f[range(batch_size), actions] = target
history = self.model.fit(states, target_f, epochs=1, verbose=0)
# print(self.epsilon)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def load(self, name):
self.model.load_weights(name)
def save(self, name):
self.model.save_weights(name)