Skip to content

Latest commit

 

History

History

training

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Preprocessing

If you want to,

  • build a new bn-en training dataset from a noisy parallel corpora (by filtering / cleaning some pairs based on our heuristics) with corresponding vocabulary models or
  • normalize a new dataset before evaluating on the model or
  • remove all evaluation pairs from training pairs for a new set of training / test datasets

refer to here.

Training & Evaluation

Note: This code has been refactored to support OpenNMT-py 2.0

Setup

$ cd seq2seq/
$ conda create python==3.7.9 pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.2 -c pytorch -p ./env
$ conda activate ./env # or source activate ./env (for older versions of anaconda)
$ pip install --upgrade -r requirements.txt
  • Note: For newer NVIDIA GPUS such as A100 or 3090 use cudatoolkit=11.0.

Usage

$ cd seq2seq/
$ python pipeline.py -h
usage: pipeline.py [-h] --input_dir PATH --output_dir PATH --src_lang SRC_LANG
                   --tgt_lang TGT_LANG
                   [--validation_samples VALIDATION_SAMPLES]
                   [--src_seq_length SRC_SEQ_LENGTH]
                   [--tgt_seq_length TGT_SEQ_LENGTH]
                   [--model_prefix MODEL_PREFIX] [--eval_model PATH]
                   [--train_steps TRAIN_STEPS]
                   [--train_batch_size TRAIN_BATCH_SIZE]
                   [--eval_batch_size EVAL_BATCH_SIZE]
                   [--gradient_accum GRADIENT_ACCUM]
                   [--warmup_steps WARMUP_STEPS]
                   [--learning_rate LEARNING_RATE] [--layers LAYERS]
                   [--rnn_size RNN_SIZE] [--word_vec_size WORD_VEC_SIZE]
                   [--transformer_ff TRANSFORMER_FF] [--heads HEADS]
                   [--valid_steps VALID_STEPS]
                   [--save_checkpoint_steps SAVE_CHECKPOINT_STEPS]
                   [--average_last AVERAGE_LAST] [--world_size WORLD_SIZE]
                   [--gpu_ranks [GPU_RANKS [GPU_RANKS ...]]]
                   [--train_from TRAIN_FROM] [--do_train] [--do_eval]
                   [--nbest NBEST] [--alpha ALPHA]

optional arguments:
  -h, --help            show this help message and exit
  --input_dir PATH, -i PATH
                        Input directory
  --output_dir PATH, -o PATH
                        Output directory
  --src_lang SRC_LANG   Source language
  --tgt_lang TGT_LANG   Target language
  --validation_samples VALIDATION_SAMPLES
                        no. of validation samples to take out from train
                        dataset when no validation data is present
  --src_seq_length SRC_SEQ_LENGTH
                        maximum source sequence length
  --tgt_seq_length TGT_SEQ_LENGTH
                        maximum target sequence length
  --model_prefix MODEL_PREFIX
                        Prefix of the model to save
  --eval_model PATH     Path to the specific model to evaluate
  --train_steps TRAIN_STEPS
                        no of training steps
  --train_batch_size TRAIN_BATCH_SIZE
                        training batch size (in tokens)
  --eval_batch_size EVAL_BATCH_SIZE
                        evaluation batch size (in sentences)
  --gradient_accum GRADIENT_ACCUM
                        gradient accum
  --warmup_steps WARMUP_STEPS
                        warmup steps
  --learning_rate LEARNING_RATE
                        learning rate
  --layers LAYERS       layers
  --rnn_size RNN_SIZE   rnn size
  --word_vec_size WORD_VEC_SIZE
                        word vector size
  --transformer_ff TRANSFORMER_FF
                        transformer feed forward size
  --heads HEADS         no of heads
  --valid_steps VALID_STEPS
                        validation interval
  --save_checkpoint_steps SAVE_CHECKPOINT_STEPS
                        model saving interval
  --average_last AVERAGE_LAST
                        average last X models
  --world_size WORLD_SIZE
                        world size
  --gpu_ranks [GPU_RANKS [GPU_RANKS ...]]
                        gpu ranks
  --train_from TRAIN_FROM
                        start training from this checkpoint
  --do_train            Run training
  --do_eval             Run evaluation
  --nbest NBEST         sentencepiece nbest size
  --alpha ALPHA         sentencepiece alpha
  • Sample input_dir structure for bn2en training and evaluation:

    input_dir/
    |---> data/
    |    |---> corpus.train.bn
    |    |---> corpus.train.en
    |    |---> RisingNews.valid.bn
    |    |---> RisingNews.valid.en
    |    |---> RisingNews.test.bn
    |    |---> RisingNews.test.en
    |    |---> sipc.test.bn
    |    |---> sipc.test.en.0
    |    |---> sipc.test.en.1
    |    ...
    |---> vocab/
    |    |---> bn.model
    |    |---> en.model
    • Input data files inside the data/ subdirectory must have the following format: X.type.lang(.count), where X is any common file prefix, type is one of {train, valid, test} and count is an optional integer (only applicable for the target_lang, when there are multiple reference files). There can be multiple .train./.valid. filepairs. In absence of .valid. files, validation_samples no of example pairs will be randomly sampled from the training files during training.
    • The vocab subdirectory must hold two sentencepiece vocabulary models formatted as src_lang.model and tgt_lang.model
  • After training / evaluation, the output_dir will have the following subdirectories with these contents.

    • Models: All the saved models
    • Reports: BLEU and SACREBLEU scores on the validation files for all saved models with the given model_prefix, and the scores on the test files for the given eval_model (if the corresponding reference files are present)
    • Outputs: Detokenized model predictions.
    • data: Merged training files after applying subword regularization.
    • Preprocessed: Training and validation data shards

To reproduce our results on an AWS p3.8xlarge ec2 instance, equipped with 4 Tesla V100 GPUs, run the script with the default hyperparameters. For example, for bn2en training,

$ export CUDA_VISIBLE_DEVICES=0,1,2,3
# for training
$ python pipeline.py \
  --src_lang bn --tgt_lang en \
  -i inputFolder/ -o outputFolder/ \ 
  --model_prefix bn2en --do_train --do_eval

For single GPU training, additionally provide the following flags: --world_size 1, --gpu_ranks 0 and update the effective batch size according to available GPU VRAM using the flags --train_batch_size X and --gradient_accum X.

Evaluation

For evaluating trained models on a single GPU on new test files, use the following snippet with appropriate arguments:

$ python pipeline.py 
  --src_lang bn --tgt_lang en \
  -i inputFolder/ -o outputFolder/ \
  --eval_model  <path/to/model> \
  --do_eval