-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
469 lines (369 loc) · 19.4 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import argparse
import hashlib
import logging
import math
import os
import warnings
from pathlib import Path
from functools import reduce
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from packaging import version
from PIL import Image
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig, ViTFeatureExtractor, ViTModel
import lpips
import json
from PIL import Image
import requests
from transformers import AutoProcessor, AutoTokenizer, CLIPModel
import torchvision.transforms.functional as TF
from torch.nn.functional import cosine_similarity
from torchvision.transforms import Compose, ToTensor, Normalize, Resize, ToPILImage
def get_prompt(subject_name, prompt_idx):
subject_names = [
"backpack", "backpack_dog", "bear_plushie", "berry_bowl", "can",
"candle", "cat", "cat2", "clock", "colorful_sneaker",
"dog", "dog2", "dog3", "dog5", "dog6",
"dog7", "dog8", "duck_toy", "fancy_boot", "grey_sloth_plushie",
"monster_toy", "pink_sunglasses", "poop_emoji", "rc_car", "red_cartoon",
"robot_toy", "shiny_sneaker", "teapot", "vase", "wolf_plushie",
]
class_tokens = [
"backpack", "backpack", "stuffed animal", "bowl", "can",
"candle", "cat", "cat", "clock", "sneaker",
"dog", "dog", "dog", "dog", "dog",
"dog", "dog", "toy", "boot", "stuffed animal",
"toy", "glasses", "toy", "toy", "cartoon",
"toy", "sneaker", "teapot", "vase", "stuffed animal",
]
class_token = class_tokens[subject_names.index(subject_name)]
prompt_list = [
f"a qwe {class_token} in the jungle",
f"a qwe {class_token} in the snow",
f"a qwe {class_token} on the beach",
f"a qwe {class_token} on a cobblestone street",
f"a qwe {class_token} on top of pink fabric",
f"a qwe {class_token} on top of a wooden floor",
f"a qwe {class_token} with a city in the background",
f"a qwe {class_token} with a mountain in the background",
f"a qwe {class_token} with a blue house in the background",
f"a qwe {class_token} on top of a purple rug in a forest",
f"a qwe {class_token} wearing a red hat",
f"a qwe {class_token} wearing a santa hat",
f"a qwe {class_token} wearing a rainbow scarf",
f"a qwe {class_token} wearing a black top hat and a monocle",
f"a qwe {class_token} in a chef outfit",
f"a qwe {class_token} in a firefighter outfit",
f"a qwe {class_token} in a police outfit",
f"a qwe {class_token} wearing pink glasses",
f"a qwe {class_token} wearing a yellow shirt",
f"a qwe {class_token} in a purple wizard outfit",
f"a red qwe {class_token}",
f"a purple qwe {class_token}",
f"a shiny qwe {class_token}",
f"a wet qwe {class_token}",
f"a cube shaped qwe {class_token}",
]
return prompt_list[int(prompt_idx)]
class PromptDatasetCLIP(Dataset):
def __init__(self, subject_name, data_dir_B, tokenizer, processor, epoch=None):
self.data_dir_B = data_dir_B
subject_name, prompt_idx = subject_name.split('-')
data_dir_B = os.path.join(self.data_dir_B, str(epoch))
self.image_lst = [os.path.join(data_dir_B, f) for f in os.listdir(data_dir_B) if f.endswith(".png")]
self.prompt_lst = [get_prompt(subject_name, prompt_idx)] * len(self.image_lst)
self.tokenizer = tokenizer
self.processor = processor
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def __len__(self):
return len(self.image_lst)
def __getitem__(self, idx):
image_path = self.image_lst[idx]
image = Image.open(image_path)
prompt = self.prompt_lst[idx]
extrema = image.getextrema()
if all(min_val == max_val == 0 for min_val, max_val in extrema):
return None, None
else:
prompt_inputs = self.tokenizer([prompt], padding=True, return_tensors="pt")
image_inputs = self.processor(images=image, return_tensors="pt")
return image_inputs, prompt_inputs
class PairwiseImageDatasetCLIP(Dataset):
def __init__(self, subject_name, data_dir_A, data_dir_B, processor, epoch):
self.data_dir_A = data_dir_A
self.data_dir_B = data_dir_B
subject_name, prompt_idx = subject_name.split('-')
self.data_dir_A = os.path.join(self.data_dir_A, subject_name)
self.image_files_A = [os.path.join(self.data_dir_A, f) for f in os.listdir(self.data_dir_A) if
f.endswith(".jpg")]
data_dir_B = os.path.join(self.data_dir_B, str(epoch))
self.image_files_B = [os.path.join(data_dir_B, f) for f in os.listdir(data_dir_B) if f.endswith(".png")]
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.processor = processor
def __len__(self):
return len(self.image_files_A) * len(self.image_files_B)
def __getitem__(self, index):
index_A = index // len(self.image_files_B)
index_B = index % len(self.image_files_B)
image_A = Image.open(self.image_files_A[index_A]) # .convert("RGB")
image_B = Image.open(self.image_files_B[index_B]) # .convert("RGB")
extrema_A = image_A.getextrema()
extrema_B = image_B.getextrema()
if all(min_val == max_val == 0 for min_val, max_val in extrema_A) or all(
min_val == max_val == 0 for min_val, max_val in extrema_B):
return None, None
else:
inputs_A = self.processor(images=image_A, return_tensors="pt")
inputs_B = self.processor(images=image_B, return_tensors="pt")
return inputs_A, inputs_B
class PairwiseImageDatasetDINO(Dataset):
def __init__(self, subject_name, data_dir_A, data_dir_B, feature_extractor, epoch):
self.data_dir_A = data_dir_A
self.data_dir_B = data_dir_B
subject_name, prompt_idx = subject_name.split('-')
self.data_dir_A = os.path.join(self.data_dir_A, subject_name)
self.image_files_A = [os.path.join(self.data_dir_A, f) for f in os.listdir(self.data_dir_A) if
f.endswith(".jpg")]
data_dir_B = os.path.join(self.data_dir_B, str(epoch))
self.image_files_B = [os.path.join(data_dir_B, f) for f in os.listdir(data_dir_B) if f.endswith(".png")]
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.feature_extractor = feature_extractor
def __len__(self):
return len(self.image_files_A) * len(self.image_files_B)
def __getitem__(self, index):
index_A = index // len(self.image_files_B)
index_B = index % len(self.image_files_B)
image_A = Image.open(self.image_files_A[index_A]) # .convert("RGB")
image_B = Image.open(self.image_files_B[index_B]) # .convert("RGB")
extrema_A = image_A.getextrema()
extrema_B = image_B.getextrema()
if all(min_val == max_val == 0 for min_val, max_val in extrema_A) or all(
min_val == max_val == 0 for min_val, max_val in extrema_B):
return None, None
else:
inputs_A = self.feature_extractor(images=image_A, return_tensors="pt")
inputs_B = self.feature_extractor(images=image_B, return_tensors="pt")
return inputs_A, inputs_B
class PairwiseImageDatasetLPIPS(Dataset):
def __init__(self, subject_name, data_dir_A, data_dir_B, epoch):
self.data_dir_A = data_dir_A
self.data_dir_B = data_dir_B
subject_name, prompt_idx = subject_name.split('-')
self.data_dir_A = os.path.join(self.data_dir_A, subject_name)
self.image_files_A = [os.path.join(self.data_dir_A, f) for f in os.listdir(self.data_dir_A) if
f.endswith(".jpg")]
data_dir_B = os.path.join(self.data_dir_B, str(epoch))
self.image_files_B = [os.path.join(data_dir_B, f) for f in os.listdir(data_dir_B) if f.endswith(".png")]
self.transform = Compose([
Resize((512, 512)),
ToTensor(),
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def __len__(self):
return len(self.image_files_A) * len(self.image_files_B)
def __getitem__(self, index):
index_A = index // len(self.image_files_B)
index_B = index % len(self.image_files_B)
image_A = Image.open(self.image_files_A[index_A]) # .convert("RGB")
image_B = Image.open(self.image_files_B[index_B]) # .convert("RGB")
extrema_A = image_A.getextrema()
extrema_B = image_B.getextrema()
if all(min_val == max_val == 0 for min_val, max_val in extrema_A) or all(
min_val == max_val == 0 for min_val, max_val in extrema_B):
return None, None
else:
if self.transform:
image_A = self.transform(image_A)
image_B = self.transform(image_B)
return image_A, image_B
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
clip_text_model = CLIPModel.from_pretrained("/data2/xxx/pretrained/clip-vit-large-patch14").to(device)
clip_text_tokenizer = AutoTokenizer.from_pretrained("/data2/xxx/pretrained/clip-vit-large-patch14")
clip_text_processor = AutoProcessor.from_pretrained("/data2/xxx/pretrained/clip-vit-large-patch14")
def clip_text(subject_name, image_dir):
criterion = 'clip_text'
model = clip_text_model
# Get the text features
tokenizer = clip_text_tokenizer
# Get the image features
processor =clip_text_processor
epochs = sorted([int(epoch) for epoch in os.listdir(image_dir)])
best_mean_similarity = 0
mean_similarity_list = []
for epoch in epochs:
similarity = []
dataset = PromptDatasetCLIP(subject_name, image_dir, tokenizer, processor, epoch)
dataloader = DataLoader(dataset, batch_size=32)
for i in range(len(dataset)):
image_inputs, prompt_inputs = dataset[i]
if image_inputs is not None and prompt_inputs is not None:
image_inputs['pixel_values'] = image_inputs['pixel_values'].to(device)
prompt_inputs['input_ids'] = prompt_inputs['input_ids'].to(device)
prompt_inputs['attention_mask'] = prompt_inputs['attention_mask'].to(device)
# print(prompt_inputs)
image_features = model.get_image_features(**image_inputs)
text_features = model.get_text_features(**prompt_inputs)
sim = cosine_similarity(image_features, text_features)
# image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
# text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)
# logit_scale = model.logit_scale.exp()
# sim = torch.matmul(text_features, image_features.t()) * logit_scale
similarity.append(sim.item())
if similarity:
mean_similarity = torch.tensor(similarity).mean().item()
mean_similarity_list.append(mean_similarity)
best_mean_similarity = max(best_mean_similarity, mean_similarity)
print(f'epoch: {epoch}, criterion: {criterion}, mean_similarity: {mean_similarity}({best_mean_similarity})')
else:
mean_similarity_list.append(0)
print(f'epoch: {epoch}, criterion: {criterion}, mean_similarity: {0}({best_mean_similarity})')
return mean_similarity_list
clip_image_model = CLIPModel.from_pretrained("/data2/xxx/pretrained/clip-vit-large-patch14").to(device)
clip_image_processor = AutoProcessor.from_pretrained("/data2/xxx/pretrained/clip-vit-large-patch14")
def clip_image(subject_name, image_dir, dreambooth_dir='/data2/xxx/dataset/dreambooth'):
criterion = 'clip_image'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = clip_image_model
# Get the image features
processor = clip_image_processor
epochs = sorted([int(epoch) for epoch in os.listdir(image_dir)])
best_mean_similarity = 0
mean_similarity_list = []
for epoch in epochs:
similarity = []
dataset = PairwiseImageDatasetCLIP(subject_name, dreambooth_dir, image_dir, processor, epoch)
# dataset = SelfPairwiseImageDatasetCLIP(subject, './data', processor)
for i in range(len(dataset)):
inputs_A, inputs_B = dataset[i]
if inputs_A is not None and inputs_B is not None:
inputs_A['pixel_values'] = inputs_A['pixel_values'].to(device)
inputs_B['pixel_values'] = inputs_B['pixel_values'].to(device)
image_A_features = model.get_image_features(**inputs_A)
image_B_features = model.get_image_features(**inputs_B)
image_A_features = image_A_features / image_A_features.norm(p=2, dim=-1, keepdim=True)
image_B_features = image_B_features / image_B_features.norm(p=2, dim=-1, keepdim=True)
logit_scale = model.logit_scale.exp()
sim = torch.matmul(image_A_features, image_B_features.t()) # * logit_scale
similarity.append(sim.item())
if similarity:
mean_similarity = torch.tensor(similarity).mean().item()
best_mean_similarity = max(best_mean_similarity, mean_similarity)
mean_similarity_list.append(mean_similarity)
print(f'epoch: {epoch}, criterion: {criterion}, mean_similarity: {mean_similarity}({best_mean_similarity})')
else:
mean_similarity_list.append(0)
print(f'epoch: {epoch}, criterion: {criterion}, mean_similarity: {0}({best_mean_similarity})')
return mean_similarity_list
dino_model = ViTModel.from_pretrained('/data2/xxx/pretrained/dino-vits16').to(device)
deno_feature_extractor = ViTFeatureExtractor.from_pretrained('/data2/xxx/pretrained/dino-vits16')
def dino(subject_name, image_dir, dreambooth_dir='/data2/xxx/dataset/dreambooth'):
criterion = 'dino'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = dino_model
feature_extractor = deno_feature_extractor
epochs = sorted([int(epoch) for epoch in os.listdir(image_dir)])
best_mean_similarity = 0
mean_similarity_list = []
for epoch in epochs:
similarity = []
# dataset = PairwiseImageDatasetDINO(subject, './data', image_dir, feature_extractor, epoch)
dataset = PairwiseImageDatasetDINO(subject_name, dreambooth_dir, image_dir, feature_extractor, epoch)
# dataset = SelfPairwiseImageDatasetDINO(subject, './data', feature_extractor)
for i in range(len(dataset)):
inputs_A, inputs_B = dataset[i]
if inputs_A is not None and inputs_B is not None:
inputs_A['pixel_values'] = inputs_A['pixel_values'].to(device)
inputs_B['pixel_values'] = inputs_B['pixel_values'].to(device)
outputs_A = model(**inputs_A)
image_A_features = outputs_A.last_hidden_state[:, 0, :]
outputs_B = model(**inputs_B)
image_B_features = outputs_B.last_hidden_state[:, 0, :]
image_A_features = image_A_features / image_A_features.norm(p=2, dim=-1, keepdim=True)
image_B_features = image_B_features / image_B_features.norm(p=2, dim=-1, keepdim=True)
sim = torch.matmul(image_A_features, image_B_features.t()) # * logit_scale
similarity.append(sim.item())
mean_similarity = torch.tensor(similarity).mean().item()
best_mean_similarity = max(best_mean_similarity, mean_similarity)
mean_similarity_list.append(mean_similarity)
print(f'epoch: {epoch}, criterion: {criterion}, mean_similarity: {mean_similarity}({best_mean_similarity})')
return mean_similarity_list
lpips_loss_fn = lpips.LPIPS(net='vgg').to(device)
def lpips_image(subject_name, image_dir,dreambooth_dir='/data2/xxx/dataset/dreambooth'):
criterion = 'lpips_image'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Set up the LPIPS model (vgg=True uses the VGG-based model from the paper)
loss_fn = lpips_loss_fn
# 有可能有些epoch没跑全
epochs = sorted([int(epoch) for epoch in os.listdir(image_dir)])
mean_similarity_list = []
best_mean_similarity = 0
for epoch in epochs:
similarity = []
dataset = PairwiseImageDatasetLPIPS(subject_name, dreambooth_dir, image_dir, epoch)
# dataset = SelfPairwiseImageDatasetLPIPS(subject, './data')
for i in range(len(dataset)):
image_A, image_B = dataset[i]
if image_A is not None and image_B is not None:
image_A = image_A.to(device)
image_B = image_B.to(device)
# Calculate LPIPS between the two images
distance = loss_fn(image_A, image_B)
similarity.append(distance.item())
mean_similarity = torch.tensor(similarity).mean().item()
best_mean_similarity = max(best_mean_similarity, mean_similarity)
mean_similarity_list.append(mean_similarity)
print(f'epoch: {epoch}, criterion: LPIPS distance, mean_similarity: {mean_similarity}({best_mean_similarity})')
return mean_similarity_list
if __name__ == "__main__":
image_dir = '/data2/xxx/ControlNet/oft-db/log_quant'
subject_dirs, subject_names = [], []
for name in os.listdir(image_dir):
if os.path.isdir(os.path.join(image_dir, name)):
subject_dirs.append(os.path.join(image_dir, name))
subject_names.append(name)
results_path = '/data2/xxx/ControlNet/oft-db/log_quant/results.json'
results_dict = dict()
if os.path.exists(results_path):
with open(results_path, 'r') as f:
results = f.__iter__()
while True:
try:
result_json = json.loads(next(results))
results_dict.update(result_json)
except StopIteration:
print("finish extraction.")
break
for idx in range(len(subject_names)):
subject_name = subject_names[idx]
subject_dir = subject_dirs[idx]
print(f'evaluating {subject_dir}')
dino_sim = dino(subject_name, subject_dir)
clip_i_sim = clip_image(subject_name, subject_dir)
clip_t_sim = clip_text(subject_name, subject_dir)
lpips_sim = lpips_image(subject_name, subject_dir)
subject_result = {'DINO': dino_sim, 'CLIP-I': clip_i_sim, 'CLIP-T': clip_t_sim, 'LPIPS': lpips_sim}
print(subject_result)
with open(results_path, 'a') as f:
json_string = json.dumps({subject_name: subject_result})
f.write(json_string + "\n")