-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathfs_unsup_llcfs.m
164 lines (143 loc) · 3.71 KB
/
fs_unsup_llcfs.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
function [Y, tao, objHistory] = fs_unsup_llcfs(X,param)
%
% Input
% X: nSmp * nDim
% param, a struct of parameters
% nClusters, the number of clusters
% k, the size of knn
% beta, the regularization parameter
% Output
% Y: nSmp * nClusters
% tao: nDim * 1
%
%
%
% [1] Feature Selection and Kernel Learning for Local Learning-Based Clustering, PAMI-2011
%
% Liang Du (csliangdu@gmail.com)
if isfield(param, 'nClusters')
c = param.nClusters;
end
k = 30;
if isfield(param, 'k')
k = param.k;
end
beta = 1;
if isfield(param, 'beta')
beta = param.beta;
end
kType = 1;
if isfield(param, 'kType')
kType = param.kType;
end
maxiter = 50;
if isfield(param, 'maxiter')
maxiter = param.maxiter;
end
epsilon = 1e-5;
if isfield(param, 'epsilon')
epsilon = param.epsilon;
end
isTao = 0;
epsilon_tao = 1e-5;
[n, d] = size(X);
% convergence by maxiter
isMaxiter = 1;
if maxiter > 0
isMaxiter = 1;
end
% convergence by epsilon
isEpsilon = 0;
if isEpsilon > 0
isEpsilon = 1;
end
tao = ones(d,1) / d;
objHistory = [];
iter = 0;
while true
wX = bsxfun(@times, X, sqrt(max(tao, eps))' );
wX2 = bsxfun(@times, X, max(tao, eps)' );
wK = wX * wX';
% k-mutual neighbors re-computation using weighted features
switch kType
case 1
W = SimGraph_NearestNeighbors(wX', k, 2, 0);
[idx, jdx, ~] = find(W);
kIdx = cell(n, 1);
nz = length(idx);
for ii = 1:nz
kIdx{jdx(ii)} = [kIdx{jdx(ii)}, idx(ii)];
end
case 2
if isempty(which('knnsearch'))
disp('The funcion knnsearch in stat toolbox is not found');
else
[kIdx, ~] = knnsearch(wX, wX, 'k', min(n, k + 1) );
kIdx = kIdx(:, 2:end);
kIdx = mat2cell(kIdx, ones(n, 1), size(kIdx, 2));
end
otherwise
disp('');
end
% construct A for laplacian
A = zeros(n);
wA = cell(n,1);% pre storage for w computation
for i = 1:n
lidx = kIdx{i};
ni = length(lidx);
if ni > 1
Ki = wK(lidx, lidx);
ki = wK(i, lidx);
Hi = eye(ni) - ones(ni, ni) / ni;
Ii = eye(ni);
Iib = Ii / beta;
Ai = Hi * Ki * Hi;
Ai = (Ai + Iib) \ Ai;
Ai = Hi - Hi * Ai;
Ai = Ai * beta;
wA{i} = wX2(lidx, :)' * Ai; % EQ 15
Ai = (ki - sum(Ki) / ni) * Ai;
Ai = Ai + ones(1, ni) / ni;
A(i, lidx) = Ai;
end
end
% construct laplacian for local learning
M = eye(n) - A;
M = M' * M;
M(isnan(M)) = 0;
M(isinf(M)) = 0;
% first c eigenvectors corresponding to the first c smallest eigenvalues
M = (M + M') / 2;
[Y, eigval] = eig(M);
eigval = diag(eigval);
[eigval, eigidx] = sort(eigval, 'ascend');
eigval = eigval(eigidx(1:c));
Y = Y(:, eigidx(1:c));
objHistory = [objHistory; sum(eigval)];%#ok
% compute wc to compute tao
tao_old = tao;
tao = zeros(d, 1);
for i = 1:n
lidx = kIdx{i};
ni = length(lidx);
if ni > 1
wi = wA{i} * Y(lidx,:);
tao = sum(wi.^2, 2) + tao;
end
end
tao = sqrt(tao);
tao = tao / sum(tao);
% check the convergence
iter = iter + 1;
if isEpsilon && iter > 1
if abs(objHistory(end-1) - objHistory(end)) < epsilon
break;
end
end
if isTao && sum(abs(tao_old - tao)) < epsilon_tao
break;
end
if isMaxiter && iter == maxiter
break;
end
end