-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathlpp.m
100 lines (88 loc) · 3.21 KB
/
lpp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
function [mappedX, mapping] = lpp(X, no_dims, k, sigma, eig_impl)
%LPP Perform linearity preserving projection
%
% [mappedX, mapping] = lpp(X, no_dims, k, sigma, eig_impl)
%
% Perform the Linearity Preserving Projection on dataset X to reduce it to
% dimensionality no_dims. The number of neighbors that is used by LPP is
% specified by k (default = 12). The variable sigma determines the
% bandwidth of the Gaussian kernel (default = 1).
%
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.1b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
if size(X, 2) > size(X, 1)
error('Number of samples should be higher than number of dimensions.');
end
if ~exist('no_dims', 'var')
no_dims = 2;
end
if ~exist('k', 'var')
k = 12;
end
if ~exist('sigma', 'var')
sigma = 1;
end
if ~exist('eig_impl', 'var')
eig_impl = 'Matlab';
end
% Construct neighborhood graph
disp('Constructing neighborhood graph...');
if size(X, 1) < 4000
G = L2_distance(X', X');
% Compute neighbourhood graph
[tmp, ind] = sort(G);
for i=1:size(G, 1)
G(i, ind((2 + k):end, i)) = 0;
end
G = sparse(double(G));
G = max(G, G'); % Make sure distance matrix is symmetric
else
G = find_nn(X, k);
end
G = G .^ 2;
G = G ./ max(max(G));
% Compute weights (W = G)
disp('Computing weight matrices...');
% Compute Gaussian kernel (heat kernel-based weights)
G(G ~= 0) = exp(-G(G ~= 0) / (2 * sigma ^ 2));
% Construct diagonal weight matrix
D = diag(sum(G, 2));
% Compute Laplacian
L = D - G;
L(isnan(L)) = 0; D(isnan(D)) = 0;
L(isinf(L)) = 0; D(isinf(D)) = 0;
% Compute XDX and XLX and make sure these are symmetric
disp('Computing low-dimensional embedding...');
DP = X' * D * X;
LP = X' * L * X;
DP = (DP + DP') / 2;
LP = (LP + LP') / 2;
% Perform eigenanalysis of generalized eigenproblem (as in LEM)
if size(X, 1) > 200 && no_dims < (size(X, 1) / 2)
if strcmp(eig_impl, 'JDQR')
options.Disp = 0;
options.LSolver = 'bicgstab';
[eigvector, eigvalue] = jdqz(LP, DP, no_dims, 'SA', options);
else
options.disp = 0;
options.issym = 1;
options.isreal = 1;
[eigvector, eigvalue] = eigs(LP, DP, no_dims, 'SA', options);
end
else
[eigvector, eigvalue] = eig(LP, DP);
end
% Sort eigenvalues in descending order and get largest eigenvectors
[eigvalue, ind] = sort(diag(eigvalue), 'ascend');
eigvector = eigvector(:,ind(1:no_dims));
% Compute final linear basis and map data
mappedX = X * eigvector;
mapping.M = eigvector;
mapping.mean = mean(X, 1);