-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathltsa.m
101 lines (88 loc) · 3.36 KB
/
ltsa.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
function mappedX = ltsa(X, no_dims, k, eig_impl)
%LTSA Runs the local tangent space alignment algorithm
%
% mappedX = ltsa(X, no_dims, k, eig_impl)
%
% The function runs the local tangent space alignment algorithm on dataset
% X, reducing the data to dimensionality d. The number of neighbors is
% specified by k.
%
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.1b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
if ~exist('no_dims', 'var')
no_dims = 2;
end
if ~exist('k', 'var')
k = 12;
end
if ~exist('eig_impl', 'var')
eig_impl = 'Matlab';
end
% Compute neighborhood indices
disp('Find nearest neighbors...');
n = size(X, 1);
[D, ni] = find_nn(X, k);
% Compute local information matrix for all datapoints
disp('Compute local information matrices for all datapoints...');
Bi = cell(1, n);
for i=1:n
% Compute correlation matrix W
Ii = ni(i,:);
Ii = Ii(Ii ~= 0);
kt = numel(Ii);
Xi = X(Ii,:) - repmat(mean(X(Ii,:), 1), [kt 1]);
W = Xi * Xi';
W = (W + W') / 2;
% Compute local information by computing d largest eigenvectors of W
[Vi, Si] = schur(W);
[s, Ji] = sort(-diag(Si));
if length(Ji) < no_dims
no_dims = length(Ji);
warning(['Target dimensionality reduced to ' num2str(no_dims) '...']);
end
Vi = Vi(:,Ji(1:no_dims));
% Store eigenvectors in G (Vi is the space with the maximum variance, i.e. a good approximation of the tangent space at point Xi)
% The constant 1/sqrt(kt) serves as a centering matrix
Gi = double([repmat(1 / sqrt(kt), [kt 1]) Vi]);
% Compute Bi = I - Gi * Gi'
Bi{i} = eye(kt) - Gi * Gi';
end
% Construct sparse matrix B (= alignment matrix)
disp('Construct alignment matrix...');
B = speye(n);
for i=1:n
Ii = ni(i,:);
Ii = Ii(Ii ~= 0);
B(Ii, Ii) = B(Ii, Ii) + Bi{i}; % sum Bi over all points
B(i, i) = B(i, i) - 1;
end
B = (B + B') / 2; % make sure B is symmetric
% For sparse datasets, we might end up with NaNs in M. We just set them to zero for now...
B(isnan(B)) = 0;
B(isinf(B)) = 0;
% Perform eigenanalysis of matrix B
disp('Perform eigenanalysis...');
tol = 0;
if strcmp(eig_impl, 'JDQR')
options.Disp = 0;
options.LSolver = 'bicgstab';
[mappedX, D] = jdqr(B, no_dims + 1, tol, options); % only need bottom (no_dims + 1) eigenvectors
else
options.disp = 0;
options.isreal = 1;
options.issym = 1;
[mappedX, D] = eigs(B, no_dims + 1, tol, options); % only need bottom (no_dims + 1) eigenvectors
end
% Sort eigenvalues and eigenvectors
[D, ind] = sort(diag(D), 'ascend');
mappedX = mappedX(:,ind);
% Final embedding coordinates
if size(mappedX, 2) < no_dims + 1, no_dims = size(mappedX, 2) - 1; end
mappedX = mappedX(:,2:no_dims + 1);