-
Notifications
You must be signed in to change notification settings - Fork 0
/
word2vec.py
220 lines (184 loc) · 10 KB
/
word2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# -*- coding: utf-8 -*-
"""
Created on Fri Feb 24 12:33:55 2017
@author: csten_000
"""
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
import collections
import math
import random
import tensorflow as tf
def batch_buffer_append(config, dataset, firsttime=False):
global dindex, permutations, currset
if firsttime:
lens = [len(dataset.traintargets) if config.w2v_usesets[0] else 0, len(dataset.testtargets) if config.w2v_usesets[1] else 0, len(dataset.validtargets) if config.w2v_usesets[2] else 0]
currset = np.random.permutation([0]*lens[0]+[1]*lens[1]+[2]*lens[2])
permutations = [np.random.permutation(i) for i in lens]
dindex = [0,[0,0,0],0] #dindex is: whichset, permuations[currset[dindex[0]]], index of that review
return
else:
whichset = currset[dindex[0]]
whereinset = permutations[whichset][(dindex[1][whichset])]
if whichset == 0: #wir haben ne zufällige reihenfolge, laut welcher aus train, test oder valid gezogen wird...
currreview = dataset.trainreviews[whereinset % len(dataset.trainreviews)]
elif whichset == 1: #(allerdings 0 mal für set x falls set x nicht drankommen soll...)
currreview = dataset.testreviews[whereinset % len(dataset.testreviews)]
elif whichset == 2: #und innerhalb der 3 sets gibt es einen eigen fortlaufenden permutationsindex, sodass jedes element 1 mal dran kommt.
currreview = dataset.validreviews[whereinset % len(dataset.validreviews)]
toappend = currreview[dindex[2]]
dindex[2] += 1
w2vsamplecount = 0
if dindex[2] >= len(currreview) or currreview[dindex[2]] == dataset.ohnum: #wenn der aktuelle review mit nummer x aus set y ende ist...
dindex[2] = 0 #letzteres sollte der fall sein wenn wir am end-token sind..
dindex[1][whichset] += 1
dindex[0] += 1 #gehe zum nächstem review, das auch in einen anderem set sein kann
w2vsamplecount = w2vsamplecount + 1
if dindex[0] >= len(currset): #wenn du alle 3 sets durch hast..
lens = [len(dataset.traintargets) if config.w2v_usesets[0] else 0, len(dataset.testtargets) if config.w2v_usesets[1] else 0, len(dataset.validtargets) if config.w2v_usesets[2] else 0]
currset = np.random.permutation([0]*lens[0]+[1]*lens[1]+[2]*lens[2])
permutations = [np.random.permutation(i) for i in lens]
dindex = [0,[0,0,0],0] #...wird alles resettet.
print("Once more through the entire dataset")
return toappend, w2vsamplecount
# Function to generate a training batch for the skip-gram model.
def generate_batch(config, batch_size, num_skips, skip_window, dataset):
w2vsamplecount = 0
assert batch_size % num_skips == 0
assert num_skips <= 2 * skip_window
batch = np.ndarray(shape=(batch_size), dtype=np.int32)
labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
span = 2 * skip_window + 1 # [ skip_window target skip_window ]
buffer = collections.deque(maxlen=span)
for _ in range(span):
bufferappend, inc = batch_buffer_append(config, dataset)
buffer.append(bufferappend)
w2vsamplecount = w2vsamplecount + inc
for i in range(batch_size // num_skips):
target = skip_window # target label at the center of the buffer
targets_to_avoid = [skip_window]
for j in range(num_skips):
while target in targets_to_avoid:
target = random.randint(0, span - 1)
targets_to_avoid.append(target)
batch[i * num_skips + j] = buffer[skip_window]
labels[i * num_skips + j, 0] = buffer[target]
bufferappend, inc = batch_buffer_append(config, dataset)
buffer.append(bufferappend)
w2vsamplecount = w2vsamplecount + inc
return batch, labels, w2vsamplecount
# Step 4: Build and train a skip-gram model.
def perform_word2vec(config, dataset, print_example=False):
w2vsamplecount = 0
batch_buffer_append(config, dataset, True)
if print_example:
batch, labels, _ = generate_batch(config=config, batch_size=8, num_skips=2, skip_window=1, dataset=dataset, w2vsamplecount=0)
for i in range(8):
print(batch[i], dataset.uplook[batch[i]], '->', labels[i, 0], dataset.uplook[labels[i, 0]])
#zwischen 2 generateten batches sind 1-2 wörter lücke, don't ask me why.
batch_buffer_append(config, dataset, True)
batch_size = 128
skip_window = 1 # How many words to consider left and right.
num_skips = 2 # How many times to reuse an input to generate a label.
# We pick a random validation set to sample nearest neighbors. Here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
num_sampled = 64 # Number of negative examples to sample.
graph = tf.Graph()
with graph.as_default():
# Input data.
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
with tf.device('/cpu:0'): #GPU implementation nonexistant yet
# Look up embeddings for inputs.
embeddings = tf.Variable(tf.random_uniform([dataset.ohnum, config.embedding_size], -1.0, 1.0))
embed = tf.nn.embedding_lookup(embeddings, train_inputs)
# Construct the variables for the NCE loss
nce_weights = tf.Variable(tf.truncated_normal([dataset.ohnum, config.embedding_size],stddev=1.0 / math.sqrt(config.embedding_size)))
nce_biases = tf.Variable(tf.zeros([dataset.ohnum]))
# Compute the average NCE loss for the batch.
# tf.nce_loss automatically draws a new sample of the negative labels each
# time we evaluate the loss.
loss = tf.reduce_mean(
tf.nn.nce_loss(weights=nce_weights,
biases=nce_biases,
labels=train_labels,
inputs=embed,
num_sampled=num_sampled,
num_classes=dataset.ohnum))
# Construct the SGD optimizer using a learning rate of 1.0.
optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)
# Compute the cosine similarity between minibatch examples and all embeddings.
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset)
similarity = tf.matmul(valid_embeddings, normalized_embeddings, transpose_b=True)
# Add variable initializer.
init = tf.global_variables_initializer()
# Step 5: Begin training.
with tf.Session(graph=graph) as session:
# We must initialize all variables before we use them.
init.run()
print("Initialized")
average_loss = 0
for step in xrange(config.num_steps_w2v):
batch_inputs, batch_labels, inc = generate_batch(config, batch_size, num_skips, skip_window, dataset)
w2vsamplecount = w2vsamplecount + inc
feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels}
# We perform one update step by evaluating the optimizer op (including it
# in the list of returned values for session.run()
_, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)
average_loss += loss_val
if step % 2000 == 0:
if step > 0:
average_loss /= 2000
# The average loss is an estimate of the loss over the last 2000 batches.
print("Average loss at step ", step, ": ", average_loss)
average_loss = 0
# Note that this is expensive (~20% slowdown if computed every 500 steps)
if step % 20000 == 0:
sim = similarity.eval()
for i in xrange(valid_size):
valid_word = dataset.uplook[valid_examples[i]]
top_k = 8 # number of nearest neighbors
nearest = (-sim[i, :]).argsort()[1:top_k + 1]
log_str = "Nearest to %s:" % valid_word
for k in xrange(top_k):
try:
close_word = dataset.uplook[nearest[k]]
except KeyError:
print("tried a non-possible key")
continue
log_str = "%s %s," % (log_str, close_word)
print(log_str)
final_embeddings = normalized_embeddings.eval()
return final_embeddings, w2vsamplecount
# Step 6: Visualize the embeddings.
def plot_tsne(final_embeddings, dataset, filename):
def plot_with_labels(low_dim_embs, labels, filename='tsne.png'):
assert low_dim_embs.shape[0] >= len(labels), "More labels than embeddings"
plt.figure(figsize=(18, 18)) # in inches
for i, label in enumerate(labels):
x, y = low_dim_embs[i, :]
plt.scatter(x, y)
plt.annotate(label,
xy=(x, y),
xytext=(5, 2),
textcoords='offset points',
ha='right',
va='bottom')
plt.savefig(filename)
try:
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
plot_only = 500
low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :])
labels = [dataset.uplook[i] for i in xrange(plot_only)]
plot_with_labels(low_dim_embs, labels, filename)
except ImportError:
print("Please install sklearn, matplotlib, and scipy to visualize embeddings.")