Skip to content

Latest commit

 

History

History
549 lines (524 loc) · 31.7 KB

template.md

File metadata and controls

549 lines (524 loc) · 31.7 KB

title: Neurotransmitter Time Constants (PSCs)

This page describes the time dependency of postsynaptic currents (PSCs), focusing on rise times and time constants of decay.

Summary

Your browser does not support SVG Your browser does not support SVG Biexponential values ($\tau_\text{fast}$ and $\tau_\text{slow}$) are plotted as a [weighted geometric mean](http://en.wikipedia.org/wiki/Weighted_geometric_mean).

Data

{%- for size, header in column_headers %} {%- if size -%} {%- else -%} {%- endif -%} {%- endfor %} {%- for receptor in receptors %} {%- for row in receptors[receptor] %} {%- endfor %} {%- endfor %}
{{ header }}{{ header }}
{{ receptor }}
{{ row['rise'] }} {{ row['decay'] }} {{ row['notes'] }} {{ row['source'] }}

* 10-90% $t_\text{rise}$

Details

A single value for the decay time constant $\tau$ implies an exponential model: $I = I_0 \cdot e^{-t / \tau}$

Two values imply a biexponential model based on a fast component ($\tau_f$) and slow component ($\tau_s$): $I = I_{0,f} \cdot e^{-t / \tau_f} + I_{0,s} \cdot e^{-t / \tau_s}$. This model also requires coefficients for each term. These may be given as absolute currents or charges, or relative percentages.

Primary Sources

  • Angulo, M. C., Rossier, J., & Audinat, E. (1999). Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex. J. Neurophysiol., 82, 1295-1302.
    • Presynaptic pyramidal cells, postsynaptic IN
      • AMPA-type GluR-mediated EPSCs: $t_\text{rise}$ = 0.29 $\pm$ 0.04 ms; $\tau$ = 2 $\pm$ 0.8 ms; n = 16
    • NMDA-type GluR-mediated EPSCs: $t_\text{rise}$ = 7 $\pm$ 0.5 ms; $\tau$ = 52 $\pm$ 9 ms; n = 4
  • Bartos, M., Vida, I., Frotscher, M., Geiger, J. R. P., and Jonas, P. (2001). Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J. Neurosci., 21(8), 2687-2698.
    • GABA$_A$ receptors, basket cell-basket cell synapses, recorded at soma
      • Biexponential, n = 11
        • $\tau_f$: 1.6 $\pm$ 0.1 ms; contribution 76.8 $\pm$ 7.8%
        • $\tau_s$: 11.0 $\pm$ 2.3 ms
      • Exponential: $\tau$ = 2.5 $\pm$ 0.2 ms; n = 14
  • Bartos, M., Vida, I., Frotscher, M., Meyer, A., Monyer, H., Geiger, J. R. P., et al. (2002). Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc. Natl. Acad. Sci. U.S.A., 99(20), 13222-13227.
    • IPSCs at BC-BC and BC-PN synapses, in CA1, CA3, and DG (parvalbumin-EGFP and wild-type mice)
    • CA1, BC-BC: 20-80% $t_\text{rise}$ = 0.27 $\pm$ 0.02 ms; $\tau_f$ = 1.2 $\pm$ 0.1 ms (90 $\pm$ 3%); $\tau_s$ = 8.0 $\pm$ 1.2 ms
    • CA3, BC-BC: 20-80% $t_\text{rise}$ = 0.25 $\pm$ 0.02 ms; $\tau_f$ = 0.8 $\pm$ 0.2 ms (84 $\pm$ 7%); $\tau_s$ = 3.8 $\pm$ 1.0 ms
    • DG, BC-BC: 20-80% $t_\text{rise}$ = 0.3 $\pm$ 0.03 ms; $\tau_f$ = 1.0 $\pm$ 0.2 ms (74 $\pm$ 8%); $\tau_s$ = 10.0 $\pm$ 2.8 ms
    • DG (WT), BC-BC: 20-80% $t_\text{rise}$ = 0.2 $\pm$ 0.01 ms; $\tau_f$ = 1.4 $\pm$ 0.2 ms (81 $\pm$ 6%); $\tau_s$ = 9.3 $\pm$ 1.7 ms
    • CA1, BC-PN: 20-80% $t_\text{rise}$ = 0.3 $\pm$ 0.02 ms; $\tau_f$ = 1.2 $\pm$ 0.4 ms (60 $\pm$ 8%); $\tau_s$ = 7.3 $\pm$ 1.9 ms
    • CA3, BC-PN: 20-80% $t_\text{rise}$ = 0.3 $\pm$ 0.02 ms; $\tau_f$ = 1.2 $\pm$ 0.4 ms (60 $\pm$ 4%); $\tau_s$ = 7.9 $\pm$ 0.2 ms
    • DG, BC-PN: 20-80% $t_\text{rise}$ = 0.2 $\pm$ 0.03 ms; $\tau_f$ = 1.8 $\pm$ 0.7 ms (60 $\pm$ 20%); $\tau_s$ = 8.5 $\pm$ 3.7 ms
    • DG (WT), BC-PN: 20-80% $t_\text{rise}$ = 0.2 $\pm$ 0.02 ms; $\tau_f$ = 1.3 $\pm$ 0.2 ms (50 $\pm$ 8%); $\tau_s$ = 5.6 $\pm$ 0.4 ms
  • Bellingham, M.C., Lim, R., Walmsley, B. (1998). Developmental changes in EPSC quantal size and quantal content at a central glutamatergic synapse in rat. J. Physiol. 511, 861-869.
    • AMPA/NMDA time constants in young vs. old rats in the endbulb-bushy cell synapse
    • Evoked AMPA EPSC:
      • 10-90% $t_\text{rise}$ = 0.59 +- 0.05 ms (4-11 days old)
      • 10-90% $t_\text{rise}$ = 0.46 +- 0.02 ms (12-18 days old)
      • $\tau$ = 1.33 +- 0.18 ms (4-11 days old)
      • $\tau$ = 0.66 +- 0.20 ms (12-18 days old)
    • Spontaneous AMPA EPSC:
      • 10-90% $t_\text{rise}$ = 0.25 +- 0.01 ms (4-11 days old)
      • 10-90% $t_\text{rise}$ = 0.22 +- 0.004 ms (12-18 days old)
      • $\tau$ = 0.43 +- 0.04 ms (4-11 days old)
      • $\tau$ = 0.34 +- 0.04 ms (12-18 days old)
    • Evoked NMDA EPSC:
      • $\tau$ = 101.2 +- 11.5 ms (4-11 days old)
      • $\tau$ = 60.4 +- 3.4 ms (12-18 days old)
    • Spontaneous NMDA EPSC:
      • $\tau$ = 95.0 +- 8.6 ms (4-11 days old)
      • $\tau$ = 64.0 +- 4.7 ms (12-18 days old)
  • Bengtson, C. P., Tozzi, A., Bernardi, G., Mercuri, N. B. (2004). Transient receptor potential-like channels mediate metabotropic glutamate receptor EPSCs in rat dopamine neurones. J. Physiol., 555, 323-330.
    • EPSCs mediated by group I metabotropic glutamate receptor subtype 1 (mGluR1) in rat dopamine neurons from the substantia nigra pars compacta (SNc)
    • Inward current (V = -75 mV): $t_\text{rise}$ = 199 $\pm$ 25 ms; $\tau_\text{decay}$ = 809 $\pm$ 92 ms; n = 15
    • Outward current (reversed by V = 47 mV): $t_\text{rise}$ = 890 $\pm$ 90 ms; $\tau_\text{decay}$ = 3180 $\pm$ 440 ms;
    • With DHPG agonist
      • Inward current (V = -75 mV): $t_\text{rise}$ = 960 $\pm$ 90 ms; $\tau_\text{decay}$ = 3100 $\pm$ 340 ms; n = 9
      • Outward current (reversed by V = 45 mV): $t_\text{rise}$ = 4820 $\pm$ 1100 ms; $\tau_\text{decay}$ = 11150 $\pm$ 1520 ms;
  • Callister, R.J., Walmsley, B. (1996). Amplitude and time course of evoked and spontaneous synaptic currents in rat submandibular ganglion cells. J. Physiol. 490, 149-157.
    • EPSCs in submandibular ganglion cells. Found no significant difference between evoked and spontaneous EPSC time courses.
    • Evoked EPSC:
      • 10-90% $t_\text{rise}$ = 2.6 $\pm$ 0.4 ms
      • $\tau$fast = 6.9 $\pm$ 0.8 ms
      • $\tau$slow = 34.4 $\pm$ 7.7 ms
    • Spontaneous EPSC:
      • $\tau$fast = 8.3 $\pm$ 1.2 ms
      • $\tau$slow = 38.0 $\pm$ 9.6 ms
  • Derkach, V. A., Selyanko, A. A., Skok, V. I. (1983). Acetylcholine-induced current fluctuations and fast excitatory post-synaptic currents in rabbit sympathetic neurones. J. Physiol., 336, 511-526.
    • Rabbit superior cervical ganglion neurons
    • EPSC from ACh nicotinic receptors (muscarinic receptor blocked by atropine)
    • $\tau$ = 4.6 $\pm$ 0.4 ms; n = 10
  • Edwards, F. A., Konnerth, A., Sakmann, B. (1990). Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch-clamp study. J. Physiol. (Lond.) 430: 213-249.
    • GABAA, granule cells, dentate gyrus, hippocampus, rat
    • mIPSC: $t_\text{rise}$ = 0.34 $\pm$ 0.12; $\tau_f$ = 2.7 (Af = 10 pA); $\tau_s$ = 53.6 (As = 15 pA)
    • eIPSC: $\tau_f$ = 2.3 (Af = 16 pA); $\tau_s$ = 57.5 (As = 73 pA)
  • Faber, D. S. and Korn, H. (1980). Single-Shot Channel Activation Accounts for Duration of Inhibitory Postsynaptic Potentials in a Central Neuron. Science, vol. 208, no. 4444, pp. 612-615.
    • Presynapse: interneuron; postsynapse: Mauthner cell; Carassius auratus
    • GABA, glycine, and glutamate
    • $\tau$ = 6.63 $\pm$ 2.13 ms (range 3.5-11.9 ms, n = 46)
  • Figl, A., Cohen, B. N. (2000). The $\beta$ subunit dominates the relaxation kinetics of heteromeric neuronal nicotinic receptors. J. Physiol., 524, 685-699.
    • Ganglionic EPSCs from postsynaptic nicotinic ACh receptors in Xenopus laevis
    • Subtype [ACh] (mM) -150 mV -80 mV
      $\tau_f$ (ms) $\tau_s$ (ms) Fast component fraction n $\tau_f$ (ms) $\tau_s$ (ms) Fast component fraction n
      $\alpha$2$\beta$2 500 5.1 $\pm$ 0.3 33 $\pm$ 1 0.7-0.9 5 4.4 $\pm$ 0.5 43 $\pm$ 2 0.7-0.9 6
      $\alpha$3$\beta$2 500 5.0 $\pm$ 0.5 50 $\pm$ 2 0.6-0.8 12 4.5 $\pm$ 0.2 35 $\pm$ 3 0.6-0.8 4
      $\alpha$4$\beta$2 50 7 $\pm$ 1 73 $\pm$ 6 0.45-0.85 4 5.5 $\pm$ 0.4 57 $\pm$ 3 0.45-0.85 3
      $\alpha$2$\beta$4 200 97 $\pm$ 20 620 $\pm$ 50 0.3-0.8 3 32 $\pm$ 7 220 $\pm$ 20 0.5-0.8 3
      $\alpha$3$\beta$4 200 116 $\pm$ 8 600 $\pm$ 40 0.4-0.6 6 85 $\pm$ 6 430 $\pm$ 70 0.6-0.8 6
      $\alpha$4$\beta$4 100 39 $\pm$ 5 1000 $\pm$ 200 0.5-0.8 4 37 $\pm$ 2 480 $\pm$ 50 0.6-0.85 4
    • Flint, A. C., Maisch, U. S., Weishaupt, J. H., Kriegstein, A. R., & Monyer, H. (1997). NR2A Subunit Expression Shortens NMDA Receptor Synaptic Currents in Developing Neocortex. J. Neurosci., 17(7), 2469-2476.
      • Cortical neuron, neocortex, rat: NMDAR EPSC time courses depend on subunits NR2(A/B/C/D)
      • Decrease in $\tau$ related to age-dependent expression of NMDAR subunits (especially NR2A, which is expressed at 8/9 days but not 3/4 days)
        • 3/4 days: $\tau$ = 262.8 $\pm$ 20.8 ms (n = 30)
        • 8/9 days: $\tau$ = 146 $\pm$ 9.1 ms (n = 41)
        • Supports results from Crair and Malenka, 1995; Carmignoto and Vicini, 1992; Hestrin, 1992; Takahashi et al., 1996.
      • Low NR2A: $\tau$ = 256.2 $\pm$ 22.1 ms
      • High NR2A: $\tau$ = 116.3 $\pm$ 4.9 ms
      • At 3/4 days:
        • no NR2A: $\tau$ = 306.3 $\pm$ 28.5 ms
        • with NR2A: $\tau$ = 104.5 and 113 ms
      • At 8/9 days:
        • no NR2A: $\tau$ = 193.5 $\pm$ 18.6 ms
        • with NR2A: $\tau$ = 117.5 $\pm$ 5.7 ms
    • Geiger, J. R. P., Lbke, J., Roth, A., Frotscher, M., and Jonas, P. (1997). Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron, 18, 1009-1023.
      • AMPA-type GluR, average EPSC, n = 9
        • 20-80% $t_\text{rise}$: 249 $\pm$ 15 $\mu$s (range 159-313)
        • $\tau$: 772 $\pm$ 91 $\mu$s (range 473-1302)
      • AMPA-type GluR, quantal EPSC, n = 4
        • 20-80% $t_\text{rise}$: 143 $\pm$ 16 $\mu$s (range 102-171)
        • $\tau$: 367 $\pm$ 29 $\mu$s (range 306-418)
      • NMDA-type GluR, EPSC
        • $\tau$: 19.4 $\pm$ 3.1 ms (range 11.6-27.1)
      • Use more references from this article.
    • Gupta, A., Wang, Y., & Markram, H. (2000). Organizing Principles for a Diversity of GABAergic Interneurons and Synapses in the Neocortex. Science 287(5451). 273-278.
      • Layers II to IV, somatosensory cortex, neocortex, rat
      • Divides GABA synapses into three types, based on their time constants for recovery from facilitation (F) and depression (D).
        • F1: $\tau$ = 10.41 $\pm$ 6.16 ms (n = 9)
          • Facilitated recovery: F/D $\approx$ 10
          • F1 appeared to be mediated only by GABAA receptors
        • F2: $\tau$ = 8.3 $\pm$ 2.2 ms (n = 52)
          • Depressed recovery: F/D $\approx$ 1/40
        • F3: $\tau$ = 6.44 $\pm$ 1.7 (n = 4)
          • Unchanged recovery: F $\approx$ D
    • Hestrin, S., Sah, P., & Nicoll, R. (1990). Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices. Neuron, 5, 247-253
      • Studies effect of temperature and other variables on NMDA and non-NMDA GluR in rat hippocampal pyramid neurons.
      • NMDA component
        • $\tau_f$ = 23.5 $\pm$ 3.8 ms, contribution 65% $\pm$ 12%
        • $\tau_s$ = 123 $\pm$ 83 ms
      • Non-NMDA component
        • $\tau$ = 7.2 ms
    • Jonas, P., Major, G., and Sakmann, B. (1993). Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J. Physiol. (London), 472, 615-663.
      • One cell, evoked EPSC, AMPA-type GluR, presynapse: MF, postsynapse: CA3 pyramidal cell
      • Extracellular solution of 2 mM Ca2+ and 1 mM Mg2+
        • Latency: 3.7 $\pm$ 0.3 ms; n = 1100
        • 20-80% $t_\text{rise}$: 0.5 $\pm$ 0.2; n = 1100
        • $\tau$ = 4.1 $\pm$ 0.9 ms; n = 696
      • Extracellular solution of 1 mM Ca2+ and 3 mM Mg2+
        • Latency: 4.1 $\pm$ 0.4 ms; n = 593
        • 20-80% $t_\text{rise}$: 0.6 $\pm$ 0.2; n = 593
        • $\tau$ = 4.7 $\pm$ 1.3 ms; n = 356
    • Kinney, G. A., Peterson, B. W., and Slater, N. T. (1994). The synaptic activation of N-methyl-d-aspartate receptors in the rat medial vestibular nucleus. J. Neurophysiol., 72(4), 1588-1595.
      • NMDA receptors in second-order neurons from rat medial vestibular nucleus (MVN)
      • NMDA-mediated EPSC: 10-90% $t_\text{rise}$ = 5.8 $\pm$ 0.62 ms (range 3-9 ms); $\tau_f$ = 27.6 $\pm$ 3.9 ms; $\tau_s$ = 147.4 $\pm$ 13.2 ms; n = 6
    • Puia, G., Costa, E. & Vicini, S. (1994). Functional diversity of GABA$_A$ Activated Cl-currents in Purkinje versus granule neurons in rat cerebellar slices. Neuron, 12, 117-126.
      • Heterogeneity of GABA responses: cerebellar granule cells vs. Purkinje cells
      • Biexponential model reflects intrinsic properties of GABAA receptor channels
      • Purkinje neurons: $\tau$ = 7.9 $\pm$ 1.9 ms (n = 7)
        • Vincent, P., Armstrong, C. M., and Marty, A. (1992). Inhibitory synaptic currents in rat cerebellar Purkinje cells: modulation by postsynaptic depolarization. J. Physiol. 456, 453-471.
      • Granule neurons: $t_\text{rise}$ = 0.6 $\pm$ 0.3 ms (range 0.3-1.3); $\tau_f$ = 7.0 $\pm$ 1.6 ms, $\tau_s$ = 59 $\pm$ 16 ms; contribution of slow = 60 $\pm$ 23%; (n = 7)
        • With tetrodotoxin: $\tau_f$ = 6.4 $\pm$ 0.9 ms, $\tau_s$ = 65 $\pm$ 19 ms; contribution of slow = 57 $\pm$ 19%;
    • Rotaru, D.C., Lewis, D.A., Gonzalez-Burgos, G. (2007). Dopamine D1 receptor activation regulates sodium channel-dependent EPSP amplification in rat prefrontal cortex pyramidal neurons. J. Physiol. 581, 981-1000.
      • Effect of D1-type dopamine receptor amplification on EPSP. Layer 5 pyramidal neurons, rat PFC).
        • 10-90% $t_\text{rise}$ = 7.06 $\pm$ 0.94 ms
        • $\tau$ = 25.57 $\pm$ 2.12 ms
    • Sah, P., Hestrin, S., & Nicoll, R. A. (1990). Properties of excitatory postsynaptic currents recorded in vitro from rat hippocampal interneurones. J. Physiol., 430, 605-616.
      • Rat hippocampus IN
      • NMDA receptor-mediated excitatory PSCs consist of a slow NMDA receptor component and a fast non-NMDA receptor component. The fast component was blocked with CNQX to isolate the slow component. The slow component was blocked with AP5 to isolate the fast component.
      • NMDA receptor component: $t_\text{rise}$ = 5 to 11 ms; $\tau$ = 50 to 100 ms
      • Non-NMDA receptor component: $t_\text{rise}$ = 1 to 3 ms; $\tau$ = 3 to 15 ms
    • Salin, P. A., & Prince, D. A. (1996). Spontaneous GABA$_A$ receptor mediated inhibitory currents in adult rat somatosensory cortex. J. Neurophysiol., 75, 1573-1588.
      • GABAA mediated, SG (layers 2-3), layer IV (IV), and IG neurons
      • sIPSC: $\tau$ = 5-10 ms
      • mIPSC: $t_\text{rise}$ = 0.9 $\pm$ 0.04 ms (range 0.2-4); $\tau$ = 8.3 $\pm$ 1.3 ms (n = 24)
    • Smith, A. J., Owens, S., Forsythe, I. D. (2000). Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive. J. Physiol., 529, 681-698.
      • EPSC and IPSC of MSO neuron in rats
      • AMPA receptor EPSC: $\tau$ = 1.99 $\pm$ 0.16 ms (n = 8)
      • Significant GABAA contribution to IPSC at less than 6 days old.
      • Glycinergic
        • eIPSC:
        • Up to 11 days old: 10-90% $t_\text{rise}$ = 0.7 $\pm$ 0.1 ms; $\tau_f$ = 7.8 $\pm$ 0.3 ms; $\tau_s$ = 38.3 $\pm$ 1.7 ms (contribution 7.8 $\pm$ 0.6%); n = 121
        • At 11 days old: $\tau_f$ = 3.9 $\pm$ 0.3 ms; $\tau_s$ contribution < 1%; n = 12
        • Spontaneous miniature IPSC: 10-90% $t_\text{rise}$ = 0.62 $\pm$ 0.11 ms; $\tau_f$ = 5.3 $\pm$ 0.4 ms; $\tau_s$ = 16.5 $\pm$ 0.3 ms; slow contribution of 26 $\pm$ 3.6%; n = 7
      • More results may be included in the paper.
    • Spruston, N., Jonas, P., & Sakmann, B. (1995). Dendritic glutamate receptor channel in rat hippocampal CA3 and CA1 pyramidal neurons. J. Physiol., 482, 325-352.