+++ title = "test" tags = ["test"] hasmath = true +++
\begin{align} \dfrac{101}{2} \end{align}
\begin{align} \exp(i\pi)+1 &= 0\ 1+1 &= 2 \end{align}
@@collapsible button @@collapse-content $$ E = m C^2 $$ @@ @@
- \collapsible{header}{aa feafhea faf ehfaifhoeaf afeafhefa efafheaofhe a feaief $ \frac{1}{2} $}
- \collapsible{Summary}{$$ \frac{1}{2}
$$} \collapsible{header}{$$ \frac{1}{2}$$} \collapsible{header}{$$ \frac{1}{2} $$}
- \collapsible{Summary}{$$ \frac{1}{2}
-
8/17 Tuesday \venue{Zoom}\ Caiyun Ma
- Feng, D.-J. \href{Lyapunov exponents for products of matrices and multifractal analysis. I. Positive matrices}{https://link.springer.com/content/pdf/10.1007/BF02783432.pdf}. Israel J. Math., 2003, 138, 353-376.
- \collapsible{Summary}{
To be announced.
\
Just random test... hello world blabla... $ \Sigma = {1,\ldots,m}^{\mathbb{N}}$
@@no-number
\begin{align}
\pi & = 3
- \frac{\displaystyle 1}{\displaystyle 7
- \frac{\displaystyle 1}{\displaystyle 15
- \frac{\displaystyle 1}{\displaystyle 1
- \frac{\displaystyle 1}{\displaystyle 292
- \frac{\displaystyle 1}{\displaystyle \dots }}}}}\ f(x) & = \begin{cases} \exp(\frac{1}{(x-a)(x-b)}) & x \in (a, b) \subset\mathbb{R} \ 0 & otherwise \end{cases} \end{align} @@ \figenv{Fig 1: continued fraction of Pi }{/assets/img/cfPi.png}{width:100%} Let $ (X, \mathscr{B}, \mu, T) $ be a measure-preserving system. }
-
8/17 Tuesday \venue{Zoom}\ Caiyun Ma
-
Feng, D.-J. \href{Lyapunov exponents for products of matrices and multifractal analysis. I. Positive matrices}{https://link.springer.com/content/pdf/10.1007/BF02783432.pdf}. Israel J. Math., 2003, 138, 353-376.
-
\textinput{summaries/2021/0817.md}
-
\collapsible{Summary}{\textinput{summaries/sample.md}}
-
-
\collapsible{Summary}{\inputsmmry{sample.md}}
\textinput{summaries/sample.md} \inputsmmry{sample.md}