-
Notifications
You must be signed in to change notification settings - Fork 11
/
VisualizationTech.py
260 lines (194 loc) · 9.09 KB
/
VisualizationTech.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 2 18:17:29 2019
@author: JIAN
"""
import torch
import scipy.io as sio
import numpy as np
import torch.optim as optim
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from scipy.integrate import simps
from mne.time_frequency import psd_array_multitaper
import matplotlib.gridspec as gridspec
from CompactCNN import CompactCNN
plt.rcParams.update({'font.size': 12})
torch.cuda.empty_cache()
torch.manual_seed(0)
class FeatureVis():
def __init__(self, model):
self.model = model
self.model.eval()
def generate_heatmap(self, allsignals,sampleidx,subid,samplelabel,multichannelsignal,likelihood):
"""
input:
allsignals: all the signals in the batch
sampleidx: the index of the sample
subid: the ID of the subject
samplelabel: the ground truth label of the sample
multichannelsignal: the signals from all channels for the sample
likelihood: the likelihood of the sample to be classified into alert and drowsy state
"""
if likelihood[0]>likelihood[1]:
state=0
else:
state=1
if samplelabel==0:
labelstr='alert'
else:
labelstr='drowsy'
fig = plt.figure(figsize=(14,6))
fig.suptitle('Subject:'+str(int(subid))+' '+'Label:'+labelstr+' '+'$P_{alert}=$'+str(round(likelihood[0],2))+' $P_{drowsy}=$'+str(round(likelihood[1],2)))#, fontsize=12)
# devide the figure layout
gridlayout = gridspec.GridSpec(ncols=2, nrows=3, figure=fig,wspace=0.2, hspace=0.5)
axis0 = fig.add_subplot(gridlayout[0:2,0])
axis1 = fig.add_subplot(gridlayout[2,0])
axis2 = fig.add_subplot(gridlayout[0:3,1])
# do some preparations
rawsignal=allsignals[sampleidx].cpu().detach().numpy().squeeze()
channelnum=multichannelsignal.shape[0]
samplelength=multichannelsignal.shape[1]
maxvalue=np.max(np.abs(rawsignal))
convkernelLength=self.model.kernelLength
# calculate the heatmap for the sample
source = self.model.conv(allsignals)
source = self.model.batch(source)
source = torch.nn.ELU()(source)
activations=source[sampleidx].cpu().detach().numpy().squeeze()
weights=self.model.fc.weight[state].cpu().detach().numpy().squeeze()
cam=np.matmul(weights,activations)
heatmap=np.zeros(samplelength)
halfkerlength=int(convkernelLength/2)
heatmap[halfkerlength:(samplelength-halfkerlength+1)]=cam
for i in range(halfkerlength-1):
heatmap[i]=heatmap[halfkerlength]*i/(halfkerlength-1)
for i in range((samplelength-halfkerlength),samplelength):
heatmap[i]=heatmap[halfkerlength]*(samplelength-halfkerlength+1-i)/(halfkerlength)
heatmap= (heatmap-np.mean(heatmap)) / np.sqrt(np.sum(heatmap**2)/(samplelength))
# calculate the band power components
psd, freqs = psd_array_multitaper(rawsignal, 128, adaptive=True,normalization='full', verbose=0)
freq_res = freqs[1] - freqs[0]
bandpowers=np.zeros(4)
idx_band = np.logical_and(freqs >= 1, freqs <= 4)
bandpowers[0] = simps(psd[idx_band], dx=freq_res)
idx_band = np.logical_and(freqs >= 4, freqs <= 8)
bandpowers[1] = simps(psd[idx_band], dx=freq_res)
idx_band = np.logical_and(freqs >= 8, freqs <= 12)
bandpowers[2] = simps(psd[idx_band], dx=freq_res)
idx_band = np.logical_and(freqs >= 12, freqs <= 30)
bandpowers[3] = simps(psd[idx_band], dx=freq_res)
totalpower=simps(psd, dx=freq_res)
if totalpower<0.00000001:
bandpowers=np.zeros(4)
else:
bandpowers /= totalpower
barx=np.arange(1, 5)
axis1.bar(barx,bandpowers)
axis1.set_xlim([0,5])
axis1.set_ylim([0,0.8])
axis1.set_ylabel("Relative power")
axis1.set_xticks([1,2,3,4])
axis1.set_xticklabels(['Delta','Theta','Alpha','Beta'])
# draw the heatmap
xx= np.arange(1, (samplelength+1))
axis0.set_xticks([])
axis0.set_ylim([-maxvalue-10,maxvalue+10])
axis0.set_xlim([0,(samplelength+1)])
axis0.set_ylabel("mV")
points = np.array([xx, rawsignal]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
norm = plt.Normalize(-1, 1)
lc = LineCollection(segments, cmap='viridis', norm=norm)
lc.set_array(heatmap)
lc.set_linewidth(2)
axis0.add_collection(lc)
fig.colorbar(lc,ax=axis0,orientation="horizontal", ticks=[-1, -0.5, 0, 0.5, 1])
# draw all the signals
thespan=np.percentile(multichannelsignal,98)
yttics=np.zeros(channelnum)
for i in range(channelnum):
yttics[i]=i*thespan
axis2.set_ylim([-thespan,thespan*channelnum])
axis2.set_xlim([0,samplelength+1])
labels=['Fp1', 'Fp2', 'F7', 'F3', 'Fz', 'F4', 'F8', 'FT7', 'FC3', 'FCZ', 'FC4', 'FT8', 'T3', 'C3', 'Cz', 'C4', 'T4', 'TP7', 'CP3', 'CPz', 'CP4', 'TP8','T5', 'P3', 'PZ', 'P4', 'T6', 'O1', 'Oz','O2']
plt.sca(axis2)
plt.yticks(yttics, labels)
heatmap1=np.zeros((channelnum,samplelength))-1
heatmap1[-2,:]=heatmap
xx=np.arange(1,samplelength+1)
for i in range(0,channelnum):
y=multichannelsignal[i,:]+thespan*(i)
dydx=heatmap1[i,:]
points = np.array([xx, y]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
norm = plt.Normalize(-1, 1)
lc = LineCollection(segments, cmap='viridis', norm=norm)
lc.set_array(dydx)
lc.set_linewidth(2)
axis2.add_collection(lc)
def run():
filename = r'dataset.mat'
tmp = sio.loadmat(filename)
xdata=np.array(tmp['EEGsample'])
label=np.array(tmp['substate'])
subIdx=np.array(tmp['subindex'])
label.astype(int)
subIdx.astype(int)
samplenum=label.shape[0]
channelnum=30
classes=2
subjnum=11
samplelength=3
lr=1e-2# for smalle net
sf=128
batch_size = 50
n_epoch =6
ydata=np.zeros(samplenum,dtype=np.longlong)
for i in range(samplenum):
ydata[i]=label[i]
selectedchan=[28]
rawx=xdata
xdata=xdata[:,selectedchan,:]
channelnum=len(selectedchan)
# you can set the subject id here
for i in range(2,3):
trainindx=np.where(subIdx!= i)[0]
xtrain=xdata[trainindx]
x_train = xtrain.reshape(xtrain.shape[0],1,channelnum, samplelength*sf)
y_train=ydata[trainindx]
testindx=np.where(subIdx == i)[0]
xtest=xdata[testindx]
rawxdata=rawx[testindx]
x_test = xtest.reshape(xtest.shape[0], 1,channelnum, samplelength*sf)
y_test=ydata[testindx]
train = torch.utils.data.TensorDataset(torch.from_numpy(x_train), torch.from_numpy(y_train))
train_loader = torch.utils.data.DataLoader(train, batch_size=batch_size, shuffle=True)
my_net = CompactCNN().double().cuda()
optimizer = optim.Adam(my_net.parameters(), lr=lr)
loss_class = torch.nn.NLLLoss().cuda()
for p in my_net.parameters():
p.requires_grad = True
for epoch in range(n_epoch):
for j, data in enumerate(train_loader, 0):
inputs, labels = data
input_data = inputs.cuda()
class_label = labels.cuda()
my_net.zero_grad()
my_net.train()
class_output= my_net(input_data)
err_s_label = loss_class(class_output, class_label)
err = err_s_label
err.backward()
optimizer.step()
my_net.train(False)
with torch.no_grad():
x_test = torch.DoubleTensor(x_test).cuda()
answer = my_net(x_test)
probs=np.exp(answer.cpu().numpy())
sampleVis =FeatureVis(my_net)
# you can set the sample index here
sampleidx=1
sampleVis.generate_heatmap(allsignals=x_test,sampleidx=sampleidx,subid=i,samplelabel=y_test[sampleidx],multichannelsignal=rawxdata[sampleidx],likelihood=probs[sampleidx])
if __name__ == '__main__':
run()