To replicate the experiments of the paper on unsupervised and semantic expertise finding, have a look at this script which builds a log-linear model on the W3C collection. The script then evaluates the model on the 2005 and 2006 editions of TREC Enterprise track.
[cvangysel@ilps SERT] ./W3C-expert-finding.sh <path-to-W3C-corpus> <path-to-nonexisting-temporary-directory>
Verifying W3C corpus.
Creating output directory.
Fetching topics and relevance judgments.
Constructing log-linear model on W3C collection.
Evaluating on TREC Enterprise tracks.
2005 Enterprise Track: ndcg=0.5474; map=0.2603; recip_rank=0.6209; P_5=0.4098;
2006 Enterprise Track: ndcg=0.7883; map=0.4937; recip_rank=0.8834; P_5=0.7000;
If you use SERT to produce results for your scientific publication, please refer to our WWW 2016 paper on expert finding, our ICTIR 2017 paper on structural regularities in text-based vector spaces and our software overview paper:
@inproceedings{VanGysel2016experts,
title={Unsupervised, Efficient and Semantic Expertise Retrieval},
author={Van Gysel, Christophe and de Rijke, Maarten and Worring, Marcel},
booktitle={WWW},
volume={2016},
pages={1069--1079},
year={2016},
organization={The International World Wide Web Conferences Steering Committee}
}
@inproceedings{VanGysel2017entityregularities,
title={Structural Regularities in Text-based Entity Vector Spaces},
author={Van Gysel, Christophe and de Rijke, Maarten and Kanoulas, Evangelos},
booktitle={ICTIR},
volume={2017},
year={2017},
organization={ACM}
}
@inproceedings{VanGysel2017sert,
title={Semantic Entity Retrieval Toolkit},
author={Van Gysel, Christophe and de Rijke, Maarten and Kanoulas, Evangelos},
booktitle={SIGIR 2017 Workshop on Neural Information Retrieval (Neu-IR'17)},
year={2017},
}