-
Notifications
You must be signed in to change notification settings - Fork 619
/
Copy pathreconstruction.py
169 lines (141 loc) · 6.14 KB
/
reconstruction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import argparse
import logging
from pathlib import Path
import shutil
import multiprocessing
import subprocess
import pprint
from .utils.read_write_model import read_cameras_binary
from .utils.database import COLMAPDatabase
from .triangulation import (
import_features, import_matches, geometric_verification, run_command)
def create_empty_db(database_path):
if database_path.exists():
logging.warning('The database already exists, deleting it.')
database_path.unlink()
logging.info('Creating an empty database...')
db = COLMAPDatabase.connect(database_path)
db.create_tables()
db.commit()
db.close()
def import_images(colmap_path, sfm_dir, image_dir, database_path,
single_camera=False, verbose=False):
logging.info('Importing images into the database...')
images = list(image_dir.iterdir())
if len(images) == 0:
raise IOError(f'No images found in {image_dir}.')
# We need to create dummy features for COLMAP to import images with EXIF
dummy_dir = sfm_dir / 'dummy_features'
dummy_dir.mkdir()
for i in images:
with open(str(dummy_dir / (i.name + '.txt')), 'w') as f:
f.write('0 128')
cmd = [
str(colmap_path), 'feature_importer',
'--database_path', str(database_path),
'--image_path', str(image_dir),
'--import_path', str(dummy_dir),
'--ImageReader.single_camera',
str(int(single_camera))]
run_command(cmd, verbose)
db = COLMAPDatabase.connect(database_path)
db.execute("DELETE FROM keypoints;")
db.execute("DELETE FROM descriptors;")
db.commit()
db.close()
shutil.rmtree(str(dummy_dir))
def get_image_ids(database_path):
db = COLMAPDatabase.connect(database_path)
images = {}
for name, image_id in db.execute("SELECT name, image_id FROM images;"):
images[name] = image_id
db.close()
return images
def run_reconstruction(colmap_path, sfm_dir, database_path, image_dir,
min_num_matches=None, verbose=False):
models_path = sfm_dir / 'models'
models_path.mkdir(exist_ok=True, parents=True)
cmd = [
str(colmap_path), 'mapper',
'--database_path', str(database_path),
'--image_path', str(image_dir),
'--output_path', str(models_path),
'--Mapper.num_threads', str(min(multiprocessing.cpu_count(), 16))]
if min_num_matches:
cmd += ['--Mapper.min_num_matches', str(min_num_matches)]
logging.info('Running the reconstruction with command:\n%s', ' '.join(cmd))
run_command(cmd, verbose)
models = list(models_path.iterdir())
if len(models) == 0:
logging.error('Could not reconstruct any model!')
return None
logging.info(f'Reconstructed {len(models)} models.')
largest_model = None
largest_model_num_images = 0
for model in models:
num_images = len(read_cameras_binary(str(model / 'cameras.bin')))
if num_images > largest_model_num_images:
largest_model = model
largest_model_num_images = num_images
assert largest_model_num_images > 0
logging.info(f'Largest model is #{largest_model.name} '
f'with {largest_model_num_images} images.')
stats_raw = subprocess.check_output(
[str(colmap_path), 'model_analyzer',
'--path', str(largest_model)])
stats_raw = stats_raw.decode().split("\n")
stats = dict()
for stat in stats_raw:
if stat.startswith("Registered images"):
stats['num_reg_images'] = int(stat.split()[-1])
elif stat.startswith("Points"):
stats['num_sparse_points'] = int(stat.split()[-1])
elif stat.startswith("Observations"):
stats['num_observations'] = int(stat.split()[-1])
elif stat.startswith("Mean track length"):
stats['mean_track_length'] = float(stat.split()[-1])
elif stat.startswith("Mean observations per image"):
stats['num_observations_per_image'] = float(stat.split()[-1])
elif stat.startswith("Mean reprojection error"):
stats['mean_reproj_error'] = float(stat.split()[-1][:-2])
for filename in ['images.bin', 'cameras.bin', 'points3D.bin']:
shutil.move(str(largest_model / filename), str(sfm_dir))
return stats
def main(sfm_dir, image_dir, pairs, features, matches,
colmap_path='colmap', single_camera=False,
skip_geometric_verification=False,
min_match_score=None, min_num_matches=None, verbose=False):
assert features.exists(), features
assert pairs.exists(), pairs
assert matches.exists(), matches
sfm_dir.mkdir(parents=True, exist_ok=True)
database = sfm_dir / 'database.db'
create_empty_db(database)
import_images(
colmap_path, sfm_dir, image_dir, database, single_camera, verbose)
image_ids = get_image_ids(database)
import_features(image_ids, database, features)
import_matches(image_ids, database, pairs, matches,
min_match_score, skip_geometric_verification)
if not skip_geometric_verification:
geometric_verification(colmap_path, database, pairs, verbose)
stats = run_reconstruction(
colmap_path, sfm_dir, database, image_dir, min_num_matches, verbose)
if stats is not None:
stats['num_input_images'] = len(image_ids)
logging.info('Reconstruction statistics:\n%s', pprint.pformat(stats))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--sfm_dir', type=Path, required=True)
parser.add_argument('--image_dir', type=Path, required=True)
parser.add_argument('--pairs', type=Path, required=True)
parser.add_argument('--features', type=Path, required=True)
parser.add_argument('--matches', type=Path, required=True)
parser.add_argument('--colmap_path', type=Path, default='colmap')
parser.add_argument('--single_camera', action='store_true')
parser.add_argument('--skip_geometric_verification', action='store_true')
parser.add_argument('--min_match_score', type=float)
parser.add_argument('--min_num_matches', type=int)
parser.add_argument('--verbose', action='store_true')
args = parser.parse_args()
main(**args.__dict__)